// This work derives from Vittorio Romeo's code used for cppcon 2015 licensed // under the Academic Free License. // His code is available here: https://github.com/SuperV1234/cppcon2015 #ifndef EC_MANAGER_HPP #define EC_MANAGER_HPP #define EC_INIT_ENTITIES_SIZE 256 #define EC_GROW_SIZE_AMOUNT 256 #include #include #include #include #include #include #include #include #include #include #include #include #ifndef NDEBUG #include #endif #include "Meta/Combine.hpp" #include "Meta/Matching.hpp" #include "Meta/ForEachWithIndex.hpp" #include "Meta/ForEachDoubleTuple.hpp" #include "Meta/IndexOf.hpp" #include "Bitset.hpp" namespace EC { /*! \brief Manages an EntityComponent system. EC::Manager must be created with a list of all used Components and all used tags. Note that all components must have a default constructor. Example: \code{.cpp} EC::Manager, TypeList> manager; \endcode */ template struct Manager { public: using Components = ComponentsList; using Tags = TagsList; using Combined = EC::Meta::Combine; using BitsetType = EC::Bitset; private: template struct Storage { using type = std::tuple..., std::vector >; }; using ComponentsStorage = typename EC::Meta::Morph >::type; // Entity: isAlive, ComponentsTags Info using EntitiesTupleType = std::tuple; using EntitiesType = std::vector; EntitiesType entities; ComponentsStorage componentsStorage; std::size_t currentCapacity = 0; std::size_t currentSize = 0; std::unordered_set deletedSet; public: /*! \brief Initializes the manager with a default capacity. The default capacity is set with macro EC_INIT_ENTITIES_SIZE, and will grow by amounts of EC_GROW_SIZE_AMOUNT when needed. */ Manager() { resize(EC_INIT_ENTITIES_SIZE); } private: void resize(std::size_t newCapacity) { if(currentCapacity >= newCapacity) { return; } EC::Meta::forEach([this, newCapacity] (auto t) { std::get >( this->componentsStorage).resize(newCapacity); }); entities.resize(newCapacity); for(std::size_t i = currentCapacity; i < newCapacity; ++i) { entities[i] = std::make_tuple(false, BitsetType{}); } currentCapacity = newCapacity; } public: /*! \brief Adds an entity to the system, returning the ID of the entity. Note: The ID of an entity is guaranteed to not change. */ std::size_t addEntity() { if(deletedSet.empty()) { if(currentSize == currentCapacity) { resize(currentCapacity + EC_GROW_SIZE_AMOUNT); } std::get(entities[currentSize]) = true; return currentSize++; } else { std::size_t id; { auto iter = deletedSet.begin(); id = *iter; deletedSet.erase(iter); } std::get(entities[id]) = true; return id; } } /*! \brief Marks an entity for deletion. A deleted Entity's id is stored to be reclaimed later when addEntity is called. Thus calling addEntity may return an id of a previously deleted Entity. */ void deleteEntity(const std::size_t& index) { if(hasEntity(index)) { std::get(entities.at(index)) = false; std::get(entities.at(index)).reset(); deletedSet.insert(index); } } /*! \brief Checks if the Entity with the given ID is in the system. Note that deleted Entities are still considered in the system. Consider using isAlive(). */ bool hasEntity(const std::size_t& index) const { return index < currentSize; } /*! \brief Checks if the Entity is not marked as deleted. Note that invalid Entities (Entities where calls to hasEntity() returns false) will return false. */ bool isAlive(const std::size_t& index) const { return hasEntity(index) && std::get(entities.at(index)); } /*! \brief Returns the current size or number of entities in the system. Note this function will only count entities where isAlive() returns true. */ std::size_t getCurrentSize() const { return currentSize - deletedSet.size(); } /* \brief Returns the current capacity or number of entities the system can hold. Note that when capacity is exceeded, the capacity is increased by EC_GROW_SIZE_AMOUNT. */ std::size_t getCurrentCapacity() const { return currentCapacity; } /*! \brief Returns a const reference to an Entity's info. An Entity's info is a std::tuple with a bool, and a bitset. \n The bool determines if the Entity is alive. \n The bitset shows what Components and Tags belong to the Entity. */ const EntitiesTupleType& getEntityInfo(const std::size_t& index) const { return entities.at(index); } /*! \brief Returns a reference to a component belonging to the given Entity. This function will return a reference to a Component regardless of whether or not the Entity actually owns the reference. If the Entity doesn't own the Component, changes to the Component will not affect any Entity. It is recommended to use hasComponent() to determine if the Entity actually owns that Component. */ template Component* getEntityData(const std::size_t& index) { constexpr auto componentIndex = EC::Meta::IndexOf< Component, Components>::value; if(componentIndex < Components::size) { // Cast required due to compiler thinking that an invalid // Component is needed even though the enclosing if statement // prevents this from ever happening. return (Component*) &std::get( componentsStorage).at(index); } else { return nullptr; } } /*! \brief Returns a reference to a component belonging to the given Entity. Note that this function is the same as getEntityData(). This function will return a reference to a Component regardless of whether or not the Entity actually owns the reference. If the Entity doesn't own the Component, changes to the Component will not affect any Entity. It is recommended to use hasComponent() to determine if the Entity actually owns that Component. */ template Component* getEntityComponent(const std::size_t& index) { return getEntityData(index); } /*! \brief Returns a const reference to a component belonging to the given Entity. This function will return a const reference to a Component regardless of whether or not the Entity actually owns the reference. If the Entity doesn't own the Component, changes to the Component will not affect any Entity. It is recommended to use hasComponent() to determine if the Entity actually owns that Component. */ template const Component* getEntityData(const std::size_t& index) const { constexpr auto componentIndex = EC::Meta::IndexOf< Component, Components>::value; if(componentIndex < Components::size) { // Cast required due to compiler thinking that an invalid // Component is needed even though the enclosing if statement // prevents this from ever happening. return (Component*) &std::get( componentsStorage).at(index); } else { return nullptr; } } /*! \brief Returns a const reference to a component belonging to the given Entity. Note that this function is the same as getEntityData() (const). This function will return a const reference to a Component regardless of whether or not the Entity actually owns the reference. If the Entity doesn't own the Component, changes to the Component will not affect any Entity. It is recommended to use hasComponent() to determine if the Entity actually owns that Component. */ template const Component* getEntityComponent(const std::size_t& index) const { return getEntityData(index); } /*! \brief Checks whether or not the given Entity has the given Component. Example: \code{.cpp} manager.hasComponent(entityID); \endcode */ template bool hasComponent(const std::size_t& index) const { return std::get( entities.at(index)).template getComponentBit(); } /*! \brief Checks whether or not the given Entity has the given Tag. Example: \code{.cpp} manager.hasTag(entityID); \endcode */ template bool hasTag(const std::size_t& index) const { return std::get( entities.at(index)).template getTagBit(); } /*! \brief Adds a component to the given Entity. Additional parameters given to this function will construct the Component with those parameters. Note that if the Entity already has the same component, then it will be overwritten by the newly created Component with the given arguments. Example: \code{.cpp} struct C0 { // constructor is compatible as a default constructor C0(int a = 0, char b = 'b') : a(a), b(b) {} int a; char b; } manager.addComponent(entityID, 10, 'd'); \endcode */ template void addComponent(const std::size_t& entityID, Args&&... args) { if(!isAlive(entityID) || !EC::Meta::Contains::value) { return; } Component component(std::forward(args)...); std::get( entities[entityID] ).template getComponentBit() = true; constexpr auto index = EC::Meta::IndexOf::value; // Cast required due to compiler thinking that vector at // index = Components::size is being used, even if the previous // if statement will prevent this from ever happening. (*((std::vector*)(&std::get( componentsStorage ))))[entityID] = std::move(component); } /*! \brief Removes the given Component from the given Entity. If the Entity does not have the Component given, nothing will change. Example: \code{.cpp} manager.removeComponent(entityID); \endcode */ template void removeComponent(const std::size_t& entityID) { if(!isAlive(entityID)) { return; } std::get( entities[entityID] ).template getComponentBit() = false; } /*! \brief Adds the given Tag to the given Entity. Example: \code{.cpp} manager.addTag(entityID); \endcode */ template void addTag(const std::size_t& entityID) { if(!isAlive(entityID) || !EC::Meta::Contains::value) { return; } std::get( entities[entityID] ).template getTagBit() = true; } /*! \brief Removes the given Tag from the given Entity. If the Entity does not have the Tag given, nothing will change. Example: \code{.cpp} manager.removeTag(entityID); \endcode */ template void removeTag(const std::size_t& entityID) { if(!isAlive(entityID)) { return; } std::get( entities[entityID] ).template getTagBit() = false; } private: template struct ForMatchingSignatureHelper { template static void call( const std::size_t& entityID, CType& ctype, Function&& function) { function( entityID, ctype.template getEntityData(entityID)... ); } template static void callPtr( const std::size_t& entityID, CType& ctype, Function* function) { (*function)( entityID, ctype.template getEntityData(entityID)... ); } template void callInstance( const std::size_t& entityID, CType& ctype, Function&& function) const { ForMatchingSignatureHelper::call( entityID, ctype, std::forward(function)); } template void callInstancePtr( const std::size_t& entityID, CType& ctype, Function* function) const { ForMatchingSignatureHelper::callPtr( entityID, ctype, function); } }; public: /*! \brief Calls the given function on all Entities matching the given Signature. The function object given to this function must accept std::size_t as its first parameter and Component references for the rest of the parameters. Tags specified in the Signature are only used as filters and will not be given as a parameter to the function. The second parameter is default 1 (not multi-threaded). If the second parameter threadCount is set to a value greater than 1, then threadCount threads will be used. Note that multi-threading is based on splitting the task of calling the function across sections of entities. Thus if there are only a small amount of entities in the manager, then using multiple threads may not have as great of a speed-up. Example: \code{.cpp} manager.forMatchingSignature>([] ( std::size_t ID, C0& component0, C1& component1) { // Lambda function contents here }, 4 // four threads ); \endcode Note, the ID given to the function is not permanent. An entity's ID may change when cleanup() is called. */ template void forMatchingSignature(Function&& function, std::size_t threadCount = 1) { using SignatureComponents = typename EC::Meta::Matching::type; using Helper = EC::Meta::Morph< SignatureComponents, ForMatchingSignatureHelper<> >; BitsetType signatureBitset = BitsetType::template generateBitset(); if(threadCount <= 1) { for(std::size_t i = 0; i < currentSize; ++i) { if(!std::get(entities[i])) { continue; } if((signatureBitset & std::get(entities[i])) == signatureBitset) { Helper::call(i, *this, std::forward(function)); } } } else { std::vector threads(threadCount); std::size_t s = currentSize / threadCount; for(std::size_t i = 0; i < threadCount; ++i) { std::size_t begin = s * i; std::size_t end; if(i == threadCount - 1) { end = currentSize; } else { end = s * (i + 1); } threads[i] = std::thread([this, &function, &signatureBitset] (std::size_t begin, std::size_t end) { for(std::size_t i = begin; i < end; ++i) { if(!std::get(this->entities[i])) { continue; } if((signatureBitset & std::get(entities[i])) == signatureBitset) { Helper::call(i, *this, std::forward(function)); } } }, begin, end); } for(std::size_t i = 0; i < threadCount; ++i) { threads[i].join(); } } } /*! \brief Calls the given function on all Entities matching the given Signature. The function pointer given to this function must accept std::size_t as its first parameter and Component references for the rest of the parameters. Tags specified in the Signature are only used as filters and will not be given as a parameter to the function. The second parameter is default 1 (not multi-threaded). If the second parameter threadCount is set to a value greater than 1, then threadCount threads will be used. Note that multi-threading is based on splitting the task of calling the function across sections of entities. Thus if there are only a small amount of entities in the manager, then using multiple threads may not have as great of a speed-up. Example: \code{.cpp} auto function = [] (std::size_t ID, C0& component0, C1& component1) { // Lambda function contents here }; manager.forMatchingSignaturePtr>( &function, // ptr 4 // four threads ); \endcode Note, the ID given to the function is not permanent. An entity's ID may change when cleanup() is called. */ template void forMatchingSignaturePtr(Function* function, std::size_t threadCount = 1) { using SignatureComponents = typename EC::Meta::Matching::type; using Helper = EC::Meta::Morph< SignatureComponents, ForMatchingSignatureHelper<> >; BitsetType signatureBitset = BitsetType::template generateBitset(); if(threadCount <= 1) { for(std::size_t i = 0; i < currentSize; ++i) { if(!std::get(entities[i])) { continue; } if((signatureBitset & std::get(entities[i])) == signatureBitset) { Helper::callPtr(i, *this, function); } } } else { std::vector threads(threadCount); std::size_t s = currentSize / threadCount; for(std::size_t i = 0; i < threadCount; ++i) { std::size_t begin = s * i; std::size_t end; if(i == threadCount - 1) { end = currentSize; } else { end = s * (i + 1); } threads[i] = std::thread([this, &function, &signatureBitset] (std::size_t begin, std::size_t end) { for(std::size_t i = begin; i < end; ++i) { if(!std::get(this->entities[i])) { continue; } if((signatureBitset & std::get(entities[i])) == signatureBitset) { Helper::callPtr(i, *this, function); } } }, begin, end); } for(std::size_t i = 0; i < threadCount; ++i) { threads[i].join(); } } } private: std::unordered_map)> > > forMatchingFunctions; std::size_t functionIndex = 0; public: /*! \brief Stores a function in the manager to be called later. As an alternative to calling functions directly with forMatchingSignature(), functions can be stored in the manager to be called later with callForMatchingFunctions() and callForMatchingFunction, and removed with clearForMatchingFunctions() and removeForMatchingFunction(). The syntax for the Function is the same as with forMatchingSignature(). Note that functions will be called in the same order they are inserted if called by callForMatchingFunctions() unless the internal functionIndex counter has wrapped around (is a std::size_t). Calling clearForMatchingFunctions() will reset this counter to zero. Example: \code{.cpp} manager.addForMatchingFunction>([] ( std::size_t ID, C0& component0, C1& component1) { // Lambda function contents here }); // call all stored functions manager.callForMatchingFunctions(); // remove all stored functions manager.clearForMatchingFunctions(); \endcode \return The index of the function, used for deletion with deleteForMatchingFunction() or filtering with keepSomeMatchingFunctions() or removeSomeMatchingFunctions(), or calling with callForMatchingFunction(). */ template std::size_t addForMatchingFunction(Function&& function) { while(forMatchingFunctions.find(functionIndex) != forMatchingFunctions.end()) { ++functionIndex; } using SignatureComponents = typename EC::Meta::Matching::type; using Helper = EC::Meta::Morph< SignatureComponents, ForMatchingSignatureHelper<> >; Helper helper; BitsetType signatureBitset = BitsetType::template generateBitset(); forMatchingFunctions.emplace(std::make_pair( functionIndex, std::make_tuple( signatureBitset, [function, helper, this] (std::size_t threadCount, std::vector matching) { if(threadCount <= 1) { for(auto eid : matching) { if(isAlive(eid)) { helper.callInstancePtr(eid, *this, &function); } } } else { std::vector threads(threadCount); std::size_t s = matching.size() / threadCount; for(std::size_t i = 0; i < threadCount; ++ i) { std::size_t begin = s * i; std::size_t end; if(i == threadCount - 1) { end = matching.size(); } else { end = s * (i + 1); } threads[i] = std::thread( [this, &function, &helper] (std::size_t begin, std::size_t end) { for(std::size_t i = begin; i < end; ++i) { if(isAlive(i)) { helper.callInstancePtr(i, *this, &function); } } }, begin, end); } for(std::size_t i = 0; i < threadCount; ++i) { threads[i].join(); } } }))); return functionIndex++; } private: std::vector > getMatchingEntities( std::vector bitsets, std::size_t threadCount = 1) { std::vector > matchingV(bitsets.size()); if(threadCount <= 1) { for(std::size_t i = 0; i < currentSize; ++i) { if(!isAlive(i)) { continue; } for(std::size_t j = 0; j < bitsets.size(); ++j) { if(((*bitsets[j]) & std::get(entities[i])) == (*bitsets[j])) { matchingV[j].push_back(i); } } } } else { std::vector threads(threadCount); std::size_t s = currentSize / threadCount; std::mutex mutex; for(std::size_t i = 0; i < threadCount; ++i) { std::size_t begin = s * i; std::size_t end; if(i == threadCount - 1) { end = currentSize; } else { end = s * (i + 1); } threads[i] = std::thread( [this, &matchingV, &bitsets, &mutex] (std::size_t begin, std::size_t end) { for(std::size_t j = begin; j < end; ++j) { if(!isAlive(j)) { continue; } for(std::size_t k = 0; k < bitsets.size(); ++k) { if(((*bitsets[k]) & std::get(entities[j])) == (*bitsets[k])) { std::lock_guard guard(mutex); matchingV[k].push_back(j); } } } }, begin, end); } for(std::size_t i = 0; i < threadCount; ++i) { threads[i].join(); } } return matchingV; } public: /*! \brief Call all stored functions. A second parameter can be optionally used to specify the number of threads to use when calling the functions. Otherwise, this function is by default not multi-threaded. Note that multi-threading is based on splitting the task of calling the functions across sections of entities. Thus if there are only a small amount of entities in the manager, then using multiple threads may not have as great of a speed-up. Example: \code{.cpp} manager.addForMatchingFunction>([] ( std::size_t ID, C0& component0, C1& component1) { // Lambda function contents here }); // call all stored functions manager.callForMatchingFunctions(); // call all stored functions with 4 threads manager.callForMatchingFunctions(4); // remove all stored functions manager.clearForMatchingFunctions(); \endcode */ void callForMatchingFunctions(std::size_t threadCount = 1) { std::vector bitsets; for(auto iter = forMatchingFunctions.begin(); iter != forMatchingFunctions.end(); ++iter) { bitsets.push_back(&std::get(iter->second)); } std::vector > matching = getMatchingEntities(bitsets, threadCount); std::size_t i = 0; for(auto iter = forMatchingFunctions.begin(); iter != forMatchingFunctions.end(); ++iter) { std::get<1>(iter->second)(threadCount, matching[i++]); } } /*! \brief Call a specific stored function. A second parameter can be optionally used to specify the number of threads to use when calling the function. Otherwise, this function is by default not multi-threaded. Note that multi-threading is based on splitting the task of calling the function across sections of entities. Thus if there are only a small amount of entities in the manager, then using multiple threads may not have as great of a speed-up. Example: \code{.cpp} std::size_t id = manager.addForMatchingFunction>( [] (std::size_t ID, C0& c0, C1& c1) { // Lambda function contents here }); // call the previously added function manager.callForMatchingFunction(id); // call the previously added function with 4 threads manager.callForMatchingFunction(id, 4); \endcode \return False if a function with the given id does not exist. */ bool callForMatchingFunction(std::size_t id, std::size_t threadCount = 1) { auto iter = forMatchingFunctions.find(id); if(iter == forMatchingFunctions.end()) { return false; } std::vector > matching = getMatchingEntities(std::vector{ &std::get(iter->second)}, threadCount); std::get<1>(iter->second)(threadCount, matching[0]); return true; } /*! \brief Remove all stored functions. Also resets the index counter of stored functions to 0. Example: \code{.cpp} manager.addForMatchingFunction>([] ( std::size_t ID, C0& component0, C1& component1) { // Lambda function contents here }); // call all stored functions manager.callForMatchingFunctions(); // remove all stored functions manager.clearForMatchingFunctions(); \endcode */ void clearForMatchingFunctions() { forMatchingFunctions.clear(); functionIndex = 0; } /*! \brief Removes a function that has the given id. \return True if a function was erased. */ bool removeForMatchingFunction(std::size_t id) { return forMatchingFunctions.erase(id) == 1; } /*! \brief Removes all functions that do not have the index specified in argument "list". The given List must be iterable. This is the only requirement, so a set could also be given. \return The number of functions deleted. */ template std::size_t keepSomeMatchingFunctions(List list) { std::size_t deletedCount = 0; for(auto iter = forMatchingFunctions.begin(); iter != forMatchingFunctions.end();) { if(std::find(list.begin(), list.end(), iter->first) == list.end()) { iter = forMatchingFunctions.erase(iter); ++deletedCount; } else { ++iter; } } return deletedCount; } /*! \brief Removes all functions that do not have the index specified in argument "list". This function allows for passing an initializer list. \return The number of functions deleted. */ std::size_t keepSomeMatchingFunctions( std::initializer_list list) { return keepSomeMatchingFunctions(list); } /*! \brief Removes all functions that do have the index specified in argument "list". The given List must be iterable. This is the only requirement, so a set could also be given. \return The number of functions deleted. */ template std::size_t removeSomeMatchingFunctions(List list) { std::size_t deletedCount = 0; for(auto listIter = list.begin(); listIter != list.end(); ++listIter) { deletedCount += forMatchingFunctions.erase(*listIter); } return deletedCount; } /*! \brief Removes all functions that do have the index specified in argument "list". This function allows for passing an initializer list. \return The number of functions deleted. */ std::size_t removeSomeMatchingFunctions( std::initializer_list list) { return removeSomeMatchingFunctions(list); } /*! \brief Deletes the specified function. The index of a function is returned from addForMatchingFunction() so there is no other way to get the index of a function. \return True if function existed and has been deleted. */ bool deleteForMatchingFunction(std::size_t index) { return forMatchingFunctions.erase(index) == 1; } /*! \brief Call multiple functions with mulitple signatures on all living entities. (Living entities as in entities that have not been marked for deletion.) This function requires the first template parameter to be a EC::Meta::TypeList of signatures. Note that a signature is a EC::Meta::TypeList of components and tags, meaning that SigList is a TypeList of TypeLists. The second template parameter can be inferred from the function parameter which should be a tuple of functions. The function at any index in the tuple should match with a signature of the same index in the SigList. Behavior is undefined if there are less functions than signatures. See the Unit Test of this function in src/test/ECTest.cpp for usage examples. This function was created for the use case where there are many entities in the system which can cause multiple calls to forMatchingSignature to be slow due to the overhead of iterating through the entire list of entities on each invocation. This function instead iterates through all entities once, storing matching entities in a vector of vectors (for each signature and function pair) and then calling functions with the matching list of entities. Note that multi-threaded or not, functions will be called in order of signatures. The first function signature pair will be called first, then the second, third, and so on. If this function is called with more than 1 thread specified, then the order of entities called is not guaranteed. Otherwise entities will be called in consecutive order by their ID. */ template void forMatchingSignatures( FTuple fTuple, const std::size_t threadCount = 1) { std::vector > multiMatchingEntities( SigList::size); BitsetType signatureBitsets[SigList::size]; // generate bitsets for each signature EC::Meta::forEachWithIndex( [this, &signatureBitsets] (auto signature, const auto index) { signatureBitsets[index] = BitsetType::template generateBitset (); }); // find and store entities matching signatures if(threadCount <= 1) { for(std::size_t eid = 0; eid < currentSize; ++eid) { if(!isAlive(eid)) { continue; } for(std::size_t i = 0; i < SigList::size; ++i) { if((signatureBitsets[i] & std::get(entities[eid])) == signatureBitsets[i]) { multiMatchingEntities[i].push_back(eid); } } } } else { std::vector threads(threadCount); std::mutex mutexes[SigList::size]; std::size_t s = currentSize / threadCount; for(std::size_t i = 0; i < threadCount; ++i) { std::size_t begin = s * i; std::size_t end; if(i == threadCount - 1) { end = currentSize; } else { end = s * (i + 1); } threads[i] = std::thread( [this, &mutexes, &multiMatchingEntities, &signatureBitsets] (std::size_t begin, std::size_t end) { for(std::size_t j = begin; j < end; ++j) { if(!isAlive(j)) { continue; } for(std::size_t k = 0; k < SigList::size; ++k) { if((signatureBitsets[k] & std::get(entities[j])) == signatureBitsets[k]) { std::lock_guard guard( mutexes[k]); multiMatchingEntities[k].push_back(j); } } } }, begin, end); } for(std::size_t i = 0; i < threadCount; ++i) { threads[i].join(); } } // call functions on matching entities EC::Meta::forEachDoubleTuple( EC::Meta::Morph >{}, fTuple, [this, &multiMatchingEntities, &threadCount] (auto sig, auto func, auto index) { using SignatureComponents = typename EC::Meta::Matching< decltype(sig), ComponentsList>::type; using Helper = EC::Meta::Morph< SignatureComponents, ForMatchingSignatureHelper<> >; if(threadCount <= 1) { for(const auto& id : multiMatchingEntities[index]) { if(isAlive(id)) { Helper::call(id, *this, func); } } } else { std::vector threads(threadCount); std::size_t s = multiMatchingEntities[index].size() / threadCount; for(std::size_t i = 0; i < threadCount; ++i) { std::size_t begin = s * i; std::size_t end; if(i == threadCount - 1) { end = multiMatchingEntities[index].size(); } else { end = s * (i + 1); } threads[i] = std::thread( [this, &multiMatchingEntities, &index, &func] (std::size_t begin, std::size_t end) { for(std::size_t j = begin; j < end; ++j) { if(isAlive(multiMatchingEntities[index][j])) { Helper::call( multiMatchingEntities[index][j], *this, func); } } }, begin, end); } for(std::size_t i = 0; i < threadCount; ++i) { threads[i].join(); } } } ); } /*! \brief Call multiple functions with mulitple signatures on all living entities. (Living entities as in entities that have not been marked for deletion.) Note that this function requires the tuple of functions to hold pointers to functions, not just functions. This function requires the first template parameter to be a EC::Meta::TypeList of signatures. Note that a signature is a EC::Meta::TypeList of components and tags, meaning that SigList is a TypeList of TypeLists. The second template parameter can be inferred from the function parameter which should be a tuple of functions. The function at any index in the tuple should match with a signature of the same index in the SigList. Behavior is undefined if there are less functions than signatures. See the Unit Test of this function in src/test/ECTest.cpp for usage examples. This function was created for the use case where there are many entities in the system which can cause multiple calls to forMatchingSignature to be slow due to the overhead of iterating through the entire list of entities on each invocation. This function instead iterates through all entities once, storing matching entities in a vector of vectors (for each signature and function pair) and then calling functions with the matching list of entities. Note that multi-threaded or not, functions will be called in order of signatures. The first function signature pair will be called first, then the second, third, and so on. If this function is called with more than 1 thread specified, then the order of entities called is not guaranteed. Otherwise entities will be called in consecutive order by their ID. */ template void forMatchingSignaturesPtr(FTuple fTuple, std::size_t threadCount = 1) { std::vector > multiMatchingEntities( SigList::size); BitsetType signatureBitsets[SigList::size]; // generate bitsets for each signature EC::Meta::forEachWithIndex( [&signatureBitsets] (auto signature, const auto index) { signatureBitsets[index] = BitsetType::template generateBitset (); }); // find and store entities matching signatures if(threadCount <= 1) { for(std::size_t eid = 0; eid < currentSize; ++eid) { if(!isAlive(eid)) { continue; } for(std::size_t i = 0; i < SigList::size; ++i) { if((signatureBitsets[i] & std::get(entities[eid])) == signatureBitsets[i]) { multiMatchingEntities[i].push_back(eid); } } } } else { std::vector threads(threadCount); std::mutex mutexes[SigList::size]; std::size_t s = currentSize / threadCount; for(std::size_t i = 0; i < threadCount; ++i) { std::size_t begin = s * i; std::size_t end; if(i == threadCount - 1) { end = currentSize; } else { end = s * (i + 1); } threads[i] = std::thread( [this, &mutexes, &multiMatchingEntities, &signatureBitsets] (std::size_t begin, std::size_t end) { for(std::size_t j = begin; j < end; ++j) { if(!isAlive(j)) { continue; } for(std::size_t k = 0; k < SigList::size; ++k) { if((signatureBitsets[k] & std::get(entities[j])) == signatureBitsets[k]) { std::lock_guard guard( mutexes[k]); multiMatchingEntities[k].push_back(j); } } } }, begin, end); } for(std::size_t i = 0; i < threadCount; ++i) { threads[i].join(); } } // call functions on matching entities EC::Meta::forEachDoubleTuple( EC::Meta::Morph >{}, fTuple, [this, &multiMatchingEntities, &threadCount] (auto sig, auto func, auto index) { using SignatureComponents = typename EC::Meta::Matching< decltype(sig), ComponentsList>::type; using Helper = EC::Meta::Morph< SignatureComponents, ForMatchingSignatureHelper<> >; if(threadCount <= 1) { for(const auto& id : multiMatchingEntities[index]) { if(isAlive(id)) { Helper::callPtr(id, *this, func); } } } else { std::vector threads(threadCount); std::size_t s = multiMatchingEntities[index].size() / threadCount; for(std::size_t i = 0; i < threadCount; ++i) { std::size_t begin = s * i; std::size_t end; if(i == threadCount - 1) { end = multiMatchingEntities[index].size(); } else { end = s * (i + 1); } threads[i] = std::thread( [this, &multiMatchingEntities, &index, &func] (std::size_t begin, std::size_t end) { for(std::size_t j = begin; j < end; ++j) { if(isAlive(multiMatchingEntities[index][j])) { Helper::callPtr( multiMatchingEntities[index][j], *this, func); } } }, begin, end); } for(std::size_t i = 0; i < threadCount; ++i) { threads[i].join(); } } } ); } /*! \brief Resets the Manager, removing all entities. Some data may persist but will be overwritten when new entities are added. Thus, do not depend on data to persist after a call to reset(). */ void reset() { clearForMatchingFunctions(); currentSize = 0; currentCapacity = 0; deletedSet.clear(); resize(EC_INIT_ENTITIES_SIZE); } }; } #endif