+++ /dev/null
-/**********************************************************************************************
-*
-* raylib v5.0 - A simple and easy-to-use library to enjoy videogames programming (www.raylib.com)
-*
-* FEATURES:
-* - NO external dependencies, all required libraries included with raylib
-* - Multiplatform: Windows, Linux, FreeBSD, OpenBSD, NetBSD, DragonFly,
-* MacOS, Haiku, Android, Raspberry Pi, DRM native, HTML5.
-* - Written in plain C code (C99) in PascalCase/camelCase notation
-* - Hardware accelerated with OpenGL (1.1, 2.1, 3.3, 4.3 or ES2 - choose at compile)
-* - Unique OpenGL abstraction layer (usable as standalone module): [rlgl]
-* - Multiple Fonts formats supported (TTF, XNA fonts, AngelCode fonts)
-* - Outstanding texture formats support, including compressed formats (DXT, ETC, ASTC)
-* - Full 3d support for 3d Shapes, Models, Billboards, Heightmaps and more!
-* - Flexible Materials system, supporting classic maps and PBR maps
-* - Animated 3D models supported (skeletal bones animation) (IQM)
-* - Shaders support, including Model shaders and Postprocessing shaders
-* - Powerful math module for Vector, Matrix and Quaternion operations: [raymath]
-* - Audio loading and playing with streaming support (WAV, OGG, MP3, FLAC, XM, MOD)
-* - VR stereo rendering with configurable HMD device parameters
-* - Bindings to multiple programming languages available!
-*
-* NOTES:
-* - One default Font is loaded on InitWindow()->LoadFontDefault() [core, text]
-* - One default Texture2D is loaded on rlglInit(), 1x1 white pixel R8G8B8A8 [rlgl] (OpenGL 3.3 or ES2)
-* - One default Shader is loaded on rlglInit()->rlLoadShaderDefault() [rlgl] (OpenGL 3.3 or ES2)
-* - One default RenderBatch is loaded on rlglInit()->rlLoadRenderBatch() [rlgl] (OpenGL 3.3 or ES2)
-*
-* DEPENDENCIES (included):
-* [rcore] rglfw (Camilla Löwy - github.com/glfw/glfw) for window/context management and input (PLATFORM_DESKTOP)
-* [rlgl] glad (David Herberth - github.com/Dav1dde/glad) for OpenGL 3.3 extensions loading (PLATFORM_DESKTOP)
-* [raudio] miniaudio (David Reid - github.com/mackron/miniaudio) for audio device/context management
-*
-* OPTIONAL DEPENDENCIES (included):
-* [rcore] msf_gif (Miles Fogle) for GIF recording
-* [rcore] sinfl (Micha Mettke) for DEFLATE decompression algorithm
-* [rcore] sdefl (Micha Mettke) for DEFLATE compression algorithm
-* [rtextures] stb_image (Sean Barret) for images loading (BMP, TGA, PNG, JPEG, HDR...)
-* [rtextures] stb_image_write (Sean Barret) for image writing (BMP, TGA, PNG, JPG)
-* [rtextures] stb_image_resize (Sean Barret) for image resizing algorithms
-* [rtext] stb_truetype (Sean Barret) for ttf fonts loading
-* [rtext] stb_rect_pack (Sean Barret) for rectangles packing
-* [rmodels] par_shapes (Philip Rideout) for parametric 3d shapes generation
-* [rmodels] tinyobj_loader_c (Syoyo Fujita) for models loading (OBJ, MTL)
-* [rmodels] cgltf (Johannes Kuhlmann) for models loading (glTF)
-* [rmodels] Model3D (bzt) for models loading (M3D, https://bztsrc.gitlab.io/model3d)
-* [raudio] dr_wav (David Reid) for WAV audio file loading
-* [raudio] dr_flac (David Reid) for FLAC audio file loading
-* [raudio] dr_mp3 (David Reid) for MP3 audio file loading
-* [raudio] stb_vorbis (Sean Barret) for OGG audio loading
-* [raudio] jar_xm (Joshua Reisenauer) for XM audio module loading
-* [raudio] jar_mod (Joshua Reisenauer) for MOD audio module loading
-*
-*
-* LICENSE: zlib/libpng
-*
-* raylib is licensed under an unmodified zlib/libpng license, which is an OSI-certified,
-* BSD-like license that allows static linking with closed source software:
-*
-* Copyright (c) 2013-2023 Ramon Santamaria (@raysan5)
-*
-* This software is provided "as-is", without any express or implied warranty. In no event
-* will the authors be held liable for any damages arising from the use of this software.
-*
-* Permission is granted to anyone to use this software for any purpose, including commercial
-* applications, and to alter it and redistribute it freely, subject to the following restrictions:
-*
-* 1. The origin of this software must not be misrepresented; you must not claim that you
-* wrote the original software. If you use this software in a product, an acknowledgment
-* in the product documentation would be appreciated but is not required.
-*
-* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
-* as being the original software.
-*
-* 3. This notice may not be removed or altered from any source distribution.
-*
-**********************************************************************************************/
-
-#ifndef RAYLIB_H
-#define RAYLIB_H
-
-#include <stdarg.h> // Required for: va_list - Only used by TraceLogCallback
-
-#define RAYLIB_VERSION_MAJOR 5
-#define RAYLIB_VERSION_MINOR 0
-#define RAYLIB_VERSION_PATCH 0
-#define RAYLIB_VERSION "5.0"
-
-// Function specifiers in case library is build/used as a shared library (Windows)
-// NOTE: Microsoft specifiers to tell compiler that symbols are imported/exported from a .dll
-#if defined(_WIN32)
- #if defined(BUILD_LIBTYPE_SHARED)
- #if defined(__TINYC__)
- #define __declspec(x) __attribute__((x))
- #endif
- #define RLAPI __declspec(dllexport) // We are building the library as a Win32 shared library (.dll)
- #elif defined(USE_LIBTYPE_SHARED)
- #define RLAPI __declspec(dllimport) // We are using the library as a Win32 shared library (.dll)
- #endif
-#endif
-
-#ifndef RLAPI
- #define RLAPI // Functions defined as 'extern' by default (implicit specifiers)
-#endif
-
-//----------------------------------------------------------------------------------
-// Some basic Defines
-//----------------------------------------------------------------------------------
-#ifndef PI
- #define PI 3.14159265358979323846f
-#endif
-#ifndef DEG2RAD
- #define DEG2RAD (PI/180.0f)
-#endif
-#ifndef RAD2DEG
- #define RAD2DEG (180.0f/PI)
-#endif
-
-// Allow custom memory allocators
-// NOTE: Require recompiling raylib sources
-#ifndef RL_MALLOC
- #define RL_MALLOC(sz) malloc(sz)
-#endif
-#ifndef RL_CALLOC
- #define RL_CALLOC(n,sz) calloc(n,sz)
-#endif
-#ifndef RL_REALLOC
- #define RL_REALLOC(ptr,sz) realloc(ptr,sz)
-#endif
-#ifndef RL_FREE
- #define RL_FREE(ptr) free(ptr)
-#endif
-
-// NOTE: MSVC C++ compiler does not support compound literals (C99 feature)
-// Plain structures in C++ (without constructors) can be initialized with { }
-// This is called aggregate initialization (C++11 feature)
-#if defined(__cplusplus)
- #define CLITERAL(type) type
-#else
- #define CLITERAL(type) (type)
-#endif
-
-// Some compilers (mostly macos clang) default to C++98,
-// where aggregate initialization can't be used
-// So, give a more clear error stating how to fix this
-#if !defined(_MSC_VER) && (defined(__cplusplus) && __cplusplus < 201103L)
- #error "C++11 or later is required. Add -std=c++11"
-#endif
-
-// NOTE: We set some defines with some data types declared by raylib
-// Other modules (raymath, rlgl) also require some of those types, so,
-// to be able to use those other modules as standalone (not depending on raylib)
-// this defines are very useful for internal check and avoid type (re)definitions
-#define RL_COLOR_TYPE
-#define RL_RECTANGLE_TYPE
-#define RL_VECTOR2_TYPE
-#define RL_VECTOR3_TYPE
-#define RL_VECTOR4_TYPE
-#define RL_QUATERNION_TYPE
-#define RL_MATRIX_TYPE
-
-// Some Basic Colors
-// NOTE: Custom raylib color palette for amazing visuals on WHITE background
-#define LIGHTGRAY CLITERAL(Color){ 200, 200, 200, 255 } // Light Gray
-#define GRAY CLITERAL(Color){ 130, 130, 130, 255 } // Gray
-#define DARKGRAY CLITERAL(Color){ 80, 80, 80, 255 } // Dark Gray
-#define YELLOW CLITERAL(Color){ 253, 249, 0, 255 } // Yellow
-#define GOLD CLITERAL(Color){ 255, 203, 0, 255 } // Gold
-#define ORANGE CLITERAL(Color){ 255, 161, 0, 255 } // Orange
-#define PINK CLITERAL(Color){ 255, 109, 194, 255 } // Pink
-#define RED CLITERAL(Color){ 230, 41, 55, 255 } // Red
-#define MAROON CLITERAL(Color){ 190, 33, 55, 255 } // Maroon
-#define GREEN CLITERAL(Color){ 0, 228, 48, 255 } // Green
-#define LIME CLITERAL(Color){ 0, 158, 47, 255 } // Lime
-#define DARKGREEN CLITERAL(Color){ 0, 117, 44, 255 } // Dark Green
-#define SKYBLUE CLITERAL(Color){ 102, 191, 255, 255 } // Sky Blue
-#define BLUE CLITERAL(Color){ 0, 121, 241, 255 } // Blue
-#define DARKBLUE CLITERAL(Color){ 0, 82, 172, 255 } // Dark Blue
-#define PURPLE CLITERAL(Color){ 200, 122, 255, 255 } // Purple
-#define VIOLET CLITERAL(Color){ 135, 60, 190, 255 } // Violet
-#define DARKPURPLE CLITERAL(Color){ 112, 31, 126, 255 } // Dark Purple
-#define BEIGE CLITERAL(Color){ 211, 176, 131, 255 } // Beige
-#define BROWN CLITERAL(Color){ 127, 106, 79, 255 } // Brown
-#define DARKBROWN CLITERAL(Color){ 76, 63, 47, 255 } // Dark Brown
-
-#define WHITE CLITERAL(Color){ 255, 255, 255, 255 } // White
-#define BLACK CLITERAL(Color){ 0, 0, 0, 255 } // Black
-#define BLANK CLITERAL(Color){ 0, 0, 0, 0 } // Blank (Transparent)
-#define MAGENTA CLITERAL(Color){ 255, 0, 255, 255 } // Magenta
-#define RAYWHITE CLITERAL(Color){ 245, 245, 245, 255 } // My own White (raylib logo)
-
-//----------------------------------------------------------------------------------
-// Structures Definition
-//----------------------------------------------------------------------------------
-// Boolean type
-#if (defined(__STDC__) && __STDC_VERSION__ >= 199901L) || (defined(_MSC_VER) && _MSC_VER >= 1800)
- #include <stdbool.h>
-#elif !defined(__cplusplus) && !defined(bool)
- typedef enum bool { false = 0, true = !false } bool;
- #define RL_BOOL_TYPE
-#endif
-
-// Vector2, 2 components
-typedef struct Vector2 {
- float x; // Vector x component
- float y; // Vector y component
-} Vector2;
-
-// Vector3, 3 components
-typedef struct Vector3 {
- float x; // Vector x component
- float y; // Vector y component
- float z; // Vector z component
-} Vector3;
-
-// Vector4, 4 components
-typedef struct Vector4 {
- float x; // Vector x component
- float y; // Vector y component
- float z; // Vector z component
- float w; // Vector w component
-} Vector4;
-
-// Quaternion, 4 components (Vector4 alias)
-typedef Vector4 Quaternion;
-
-// Matrix, 4x4 components, column major, OpenGL style, right-handed
-typedef struct Matrix {
- float m0, m4, m8, m12; // Matrix first row (4 components)
- float m1, m5, m9, m13; // Matrix second row (4 components)
- float m2, m6, m10, m14; // Matrix third row (4 components)
- float m3, m7, m11, m15; // Matrix fourth row (4 components)
-} Matrix;
-
-// Color, 4 components, R8G8B8A8 (32bit)
-typedef struct Color {
- unsigned char r; // Color red value
- unsigned char g; // Color green value
- unsigned char b; // Color blue value
- unsigned char a; // Color alpha value
-} Color;
-
-// Rectangle, 4 components
-typedef struct Rectangle {
- float x; // Rectangle top-left corner position x
- float y; // Rectangle top-left corner position y
- float width; // Rectangle width
- float height; // Rectangle height
-} Rectangle;
-
-// Image, pixel data stored in CPU memory (RAM)
-typedef struct Image {
- void *data; // Image raw data
- int width; // Image base width
- int height; // Image base height
- int mipmaps; // Mipmap levels, 1 by default
- int format; // Data format (PixelFormat type)
-} Image;
-
-// Texture, tex data stored in GPU memory (VRAM)
-typedef struct Texture {
- unsigned int id; // OpenGL texture id
- int width; // Texture base width
- int height; // Texture base height
- int mipmaps; // Mipmap levels, 1 by default
- int format; // Data format (PixelFormat type)
-} Texture;
-
-// Texture2D, same as Texture
-typedef Texture Texture2D;
-
-// TextureCubemap, same as Texture
-typedef Texture TextureCubemap;
-
-// RenderTexture, fbo for texture rendering
-typedef struct RenderTexture {
- unsigned int id; // OpenGL framebuffer object id
- Texture texture; // Color buffer attachment texture
- Texture depth; // Depth buffer attachment texture
-} RenderTexture;
-
-// RenderTexture2D, same as RenderTexture
-typedef RenderTexture RenderTexture2D;
-
-// NPatchInfo, n-patch layout info
-typedef struct NPatchInfo {
- Rectangle source; // Texture source rectangle
- int left; // Left border offset
- int top; // Top border offset
- int right; // Right border offset
- int bottom; // Bottom border offset
- int layout; // Layout of the n-patch: 3x3, 1x3 or 3x1
-} NPatchInfo;
-
-// GlyphInfo, font characters glyphs info
-typedef struct GlyphInfo {
- int value; // Character value (Unicode)
- int offsetX; // Character offset X when drawing
- int offsetY; // Character offset Y when drawing
- int advanceX; // Character advance position X
- Image image; // Character image data
-} GlyphInfo;
-
-// Font, font texture and GlyphInfo array data
-typedef struct Font {
- int baseSize; // Base size (default chars height)
- int glyphCount; // Number of glyph characters
- int glyphPadding; // Padding around the glyph characters
- Texture2D texture; // Texture atlas containing the glyphs
- Rectangle *recs; // Rectangles in texture for the glyphs
- GlyphInfo *glyphs; // Glyphs info data
-} Font;
-
-// Camera, defines position/orientation in 3d space
-typedef struct Camera3D {
- Vector3 position; // Camera position
- Vector3 target; // Camera target it looks-at
- Vector3 up; // Camera up vector (rotation over its axis)
- float fovy; // Camera field-of-view aperture in Y (degrees) in perspective, used as near plane width in orthographic
- int projection; // Camera projection: CAMERA_PERSPECTIVE or CAMERA_ORTHOGRAPHIC
-} Camera3D;
-
-typedef Camera3D Camera; // Camera type fallback, defaults to Camera3D
-
-// Camera2D, defines position/orientation in 2d space
-typedef struct Camera2D {
- Vector2 offset; // Camera offset (displacement from target)
- Vector2 target; // Camera target (rotation and zoom origin)
- float rotation; // Camera rotation in degrees
- float zoom; // Camera zoom (scaling), should be 1.0f by default
-} Camera2D;
-
-// Mesh, vertex data and vao/vbo
-typedef struct Mesh {
- int vertexCount; // Number of vertices stored in arrays
- int triangleCount; // Number of triangles stored (indexed or not)
-
- // Vertex attributes data
- float *vertices; // Vertex position (XYZ - 3 components per vertex) (shader-location = 0)
- float *texcoords; // Vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1)
- float *texcoords2; // Vertex texture second coordinates (UV - 2 components per vertex) (shader-location = 5)
- float *normals; // Vertex normals (XYZ - 3 components per vertex) (shader-location = 2)
- float *tangents; // Vertex tangents (XYZW - 4 components per vertex) (shader-location = 4)
- unsigned char *colors; // Vertex colors (RGBA - 4 components per vertex) (shader-location = 3)
- unsigned short *indices; // Vertex indices (in case vertex data comes indexed)
-
- // Animation vertex data
- float *animVertices; // Animated vertex positions (after bones transformations)
- float *animNormals; // Animated normals (after bones transformations)
- unsigned char *boneIds; // Vertex bone ids, max 255 bone ids, up to 4 bones influence by vertex (skinning)
- float *boneWeights; // Vertex bone weight, up to 4 bones influence by vertex (skinning)
-
- // OpenGL identifiers
- unsigned int vaoId; // OpenGL Vertex Array Object id
- unsigned int *vboId; // OpenGL Vertex Buffer Objects id (default vertex data)
-} Mesh;
-
-// Shader
-typedef struct Shader {
- unsigned int id; // Shader program id
- int *locs; // Shader locations array (RL_MAX_SHADER_LOCATIONS)
-} Shader;
-
-// MaterialMap
-typedef struct MaterialMap {
- Texture2D texture; // Material map texture
- Color color; // Material map color
- float value; // Material map value
-} MaterialMap;
-
-// Material, includes shader and maps
-typedef struct Material {
- Shader shader; // Material shader
- MaterialMap *maps; // Material maps array (MAX_MATERIAL_MAPS)
- float params[4]; // Material generic parameters (if required)
-} Material;
-
-// Transform, vertex transformation data
-typedef struct Transform {
- Vector3 translation; // Translation
- Quaternion rotation; // Rotation
- Vector3 scale; // Scale
-} Transform;
-
-// Bone, skeletal animation bone
-typedef struct BoneInfo {
- char name[32]; // Bone name
- int parent; // Bone parent
-} BoneInfo;
-
-// Model, meshes, materials and animation data
-typedef struct Model {
- Matrix transform; // Local transform matrix
-
- int meshCount; // Number of meshes
- int materialCount; // Number of materials
- Mesh *meshes; // Meshes array
- Material *materials; // Materials array
- int *meshMaterial; // Mesh material number
-
- // Animation data
- int boneCount; // Number of bones
- BoneInfo *bones; // Bones information (skeleton)
- Transform *bindPose; // Bones base transformation (pose)
-} Model;
-
-// ModelAnimation
-typedef struct ModelAnimation {
- int boneCount; // Number of bones
- int frameCount; // Number of animation frames
- BoneInfo *bones; // Bones information (skeleton)
- Transform **framePoses; // Poses array by frame
- char name[32]; // Animation name
-} ModelAnimation;
-
-// Ray, ray for raycasting
-typedef struct Ray {
- Vector3 position; // Ray position (origin)
- Vector3 direction; // Ray direction
-} Ray;
-
-// RayCollision, ray hit information
-typedef struct RayCollision {
- bool hit; // Did the ray hit something?
- float distance; // Distance to the nearest hit
- Vector3 point; // Point of the nearest hit
- Vector3 normal; // Surface normal of hit
-} RayCollision;
-
-// BoundingBox
-typedef struct BoundingBox {
- Vector3 min; // Minimum vertex box-corner
- Vector3 max; // Maximum vertex box-corner
-} BoundingBox;
-
-// Wave, audio wave data
-typedef struct Wave {
- unsigned int frameCount; // Total number of frames (considering channels)
- unsigned int sampleRate; // Frequency (samples per second)
- unsigned int sampleSize; // Bit depth (bits per sample): 8, 16, 32 (24 not supported)
- unsigned int channels; // Number of channels (1-mono, 2-stereo, ...)
- void *data; // Buffer data pointer
-} Wave;
-
-// Opaque structs declaration
-// NOTE: Actual structs are defined internally in raudio module
-typedef struct rAudioBuffer rAudioBuffer;
-typedef struct rAudioProcessor rAudioProcessor;
-
-// AudioStream, custom audio stream
-typedef struct AudioStream {
- rAudioBuffer *buffer; // Pointer to internal data used by the audio system
- rAudioProcessor *processor; // Pointer to internal data processor, useful for audio effects
-
- unsigned int sampleRate; // Frequency (samples per second)
- unsigned int sampleSize; // Bit depth (bits per sample): 8, 16, 32 (24 not supported)
- unsigned int channels; // Number of channels (1-mono, 2-stereo, ...)
-} AudioStream;
-
-// Sound
-typedef struct Sound {
- AudioStream stream; // Audio stream
- unsigned int frameCount; // Total number of frames (considering channels)
-} Sound;
-
-// Music, audio stream, anything longer than ~10 seconds should be streamed
-typedef struct Music {
- AudioStream stream; // Audio stream
- unsigned int frameCount; // Total number of frames (considering channels)
- bool looping; // Music looping enable
-
- int ctxType; // Type of music context (audio filetype)
- void *ctxData; // Audio context data, depends on type
-} Music;
-
-// VrDeviceInfo, Head-Mounted-Display device parameters
-typedef struct VrDeviceInfo {
- int hResolution; // Horizontal resolution in pixels
- int vResolution; // Vertical resolution in pixels
- float hScreenSize; // Horizontal size in meters
- float vScreenSize; // Vertical size in meters
- float vScreenCenter; // Screen center in meters
- float eyeToScreenDistance; // Distance between eye and display in meters
- float lensSeparationDistance; // Lens separation distance in meters
- float interpupillaryDistance; // IPD (distance between pupils) in meters
- float lensDistortionValues[4]; // Lens distortion constant parameters
- float chromaAbCorrection[4]; // Chromatic aberration correction parameters
-} VrDeviceInfo;
-
-// VrStereoConfig, VR stereo rendering configuration for simulator
-typedef struct VrStereoConfig {
- Matrix projection[2]; // VR projection matrices (per eye)
- Matrix viewOffset[2]; // VR view offset matrices (per eye)
- float leftLensCenter[2]; // VR left lens center
- float rightLensCenter[2]; // VR right lens center
- float leftScreenCenter[2]; // VR left screen center
- float rightScreenCenter[2]; // VR right screen center
- float scale[2]; // VR distortion scale
- float scaleIn[2]; // VR distortion scale in
-} VrStereoConfig;
-
-// File path list
-typedef struct FilePathList {
- unsigned int capacity; // Filepaths max entries
- unsigned int count; // Filepaths entries count
- char **paths; // Filepaths entries
-} FilePathList;
-
-// Automation event
-typedef struct AutomationEvent {
- unsigned int frame; // Event frame
- unsigned int type; // Event type (AutomationEventType)
- int params[4]; // Event parameters (if required)
-} AutomationEvent;
-
-// Automation event list
-typedef struct AutomationEventList {
- unsigned int capacity; // Events max entries (MAX_AUTOMATION_EVENTS)
- unsigned int count; // Events entries count
- AutomationEvent *events; // Events entries
-} AutomationEventList;
-
-//----------------------------------------------------------------------------------
-// Enumerators Definition
-//----------------------------------------------------------------------------------
-// System/Window config flags
-// NOTE: Every bit registers one state (use it with bit masks)
-// By default all flags are set to 0
-typedef enum {
- FLAG_VSYNC_HINT = 0x00000040, // Set to try enabling V-Sync on GPU
- FLAG_FULLSCREEN_MODE = 0x00000002, // Set to run program in fullscreen
- FLAG_WINDOW_RESIZABLE = 0x00000004, // Set to allow resizable window
- FLAG_WINDOW_UNDECORATED = 0x00000008, // Set to disable window decoration (frame and buttons)
- FLAG_WINDOW_HIDDEN = 0x00000080, // Set to hide window
- FLAG_WINDOW_MINIMIZED = 0x00000200, // Set to minimize window (iconify)
- FLAG_WINDOW_MAXIMIZED = 0x00000400, // Set to maximize window (expanded to monitor)
- FLAG_WINDOW_UNFOCUSED = 0x00000800, // Set to window non focused
- FLAG_WINDOW_TOPMOST = 0x00001000, // Set to window always on top
- FLAG_WINDOW_ALWAYS_RUN = 0x00000100, // Set to allow windows running while minimized
- FLAG_WINDOW_TRANSPARENT = 0x00000010, // Set to allow transparent framebuffer
- FLAG_WINDOW_HIGHDPI = 0x00002000, // Set to support HighDPI
- FLAG_WINDOW_MOUSE_PASSTHROUGH = 0x00004000, // Set to support mouse passthrough, only supported when FLAG_WINDOW_UNDECORATED
- FLAG_BORDERLESS_WINDOWED_MODE = 0x00008000, // Set to run program in borderless windowed mode
- FLAG_MSAA_4X_HINT = 0x00000020, // Set to try enabling MSAA 4X
- FLAG_INTERLACED_HINT = 0x00010000 // Set to try enabling interlaced video format (for V3D)
-} ConfigFlags;
-
-// Trace log level
-// NOTE: Organized by priority level
-typedef enum {
- LOG_ALL = 0, // Display all logs
- LOG_TRACE, // Trace logging, intended for internal use only
- LOG_DEBUG, // Debug logging, used for internal debugging, it should be disabled on release builds
- LOG_INFO, // Info logging, used for program execution info
- LOG_WARNING, // Warning logging, used on recoverable failures
- LOG_ERROR, // Error logging, used on unrecoverable failures
- LOG_FATAL, // Fatal logging, used to abort program: exit(EXIT_FAILURE)
- LOG_NONE // Disable logging
-} TraceLogLevel;
-
-// Keyboard keys (US keyboard layout)
-// NOTE: Use GetKeyPressed() to allow redefining
-// required keys for alternative layouts
-typedef enum {
- KEY_NULL = 0, // Key: NULL, used for no key pressed
- // Alphanumeric keys
- KEY_APOSTROPHE = 39, // Key: '
- KEY_COMMA = 44, // Key: ,
- KEY_MINUS = 45, // Key: -
- KEY_PERIOD = 46, // Key: .
- KEY_SLASH = 47, // Key: /
- KEY_ZERO = 48, // Key: 0
- KEY_ONE = 49, // Key: 1
- KEY_TWO = 50, // Key: 2
- KEY_THREE = 51, // Key: 3
- KEY_FOUR = 52, // Key: 4
- KEY_FIVE = 53, // Key: 5
- KEY_SIX = 54, // Key: 6
- KEY_SEVEN = 55, // Key: 7
- KEY_EIGHT = 56, // Key: 8
- KEY_NINE = 57, // Key: 9
- KEY_SEMICOLON = 59, // Key: ;
- KEY_EQUAL = 61, // Key: =
- KEY_A = 65, // Key: A | a
- KEY_B = 66, // Key: B | b
- KEY_C = 67, // Key: C | c
- KEY_D = 68, // Key: D | d
- KEY_E = 69, // Key: E | e
- KEY_F = 70, // Key: F | f
- KEY_G = 71, // Key: G | g
- KEY_H = 72, // Key: H | h
- KEY_I = 73, // Key: I | i
- KEY_J = 74, // Key: J | j
- KEY_K = 75, // Key: K | k
- KEY_L = 76, // Key: L | l
- KEY_M = 77, // Key: M | m
- KEY_N = 78, // Key: N | n
- KEY_O = 79, // Key: O | o
- KEY_P = 80, // Key: P | p
- KEY_Q = 81, // Key: Q | q
- KEY_R = 82, // Key: R | r
- KEY_S = 83, // Key: S | s
- KEY_T = 84, // Key: T | t
- KEY_U = 85, // Key: U | u
- KEY_V = 86, // Key: V | v
- KEY_W = 87, // Key: W | w
- KEY_X = 88, // Key: X | x
- KEY_Y = 89, // Key: Y | y
- KEY_Z = 90, // Key: Z | z
- KEY_LEFT_BRACKET = 91, // Key: [
- KEY_BACKSLASH = 92, // Key: '\'
- KEY_RIGHT_BRACKET = 93, // Key: ]
- KEY_GRAVE = 96, // Key: `
- // Function keys
- KEY_SPACE = 32, // Key: Space
- KEY_ESCAPE = 256, // Key: Esc
- KEY_ENTER = 257, // Key: Enter
- KEY_TAB = 258, // Key: Tab
- KEY_BACKSPACE = 259, // Key: Backspace
- KEY_INSERT = 260, // Key: Ins
- KEY_DELETE = 261, // Key: Del
- KEY_RIGHT = 262, // Key: Cursor right
- KEY_LEFT = 263, // Key: Cursor left
- KEY_DOWN = 264, // Key: Cursor down
- KEY_UP = 265, // Key: Cursor up
- KEY_PAGE_UP = 266, // Key: Page up
- KEY_PAGE_DOWN = 267, // Key: Page down
- KEY_HOME = 268, // Key: Home
- KEY_END = 269, // Key: End
- KEY_CAPS_LOCK = 280, // Key: Caps lock
- KEY_SCROLL_LOCK = 281, // Key: Scroll down
- KEY_NUM_LOCK = 282, // Key: Num lock
- KEY_PRINT_SCREEN = 283, // Key: Print screen
- KEY_PAUSE = 284, // Key: Pause
- KEY_F1 = 290, // Key: F1
- KEY_F2 = 291, // Key: F2
- KEY_F3 = 292, // Key: F3
- KEY_F4 = 293, // Key: F4
- KEY_F5 = 294, // Key: F5
- KEY_F6 = 295, // Key: F6
- KEY_F7 = 296, // Key: F7
- KEY_F8 = 297, // Key: F8
- KEY_F9 = 298, // Key: F9
- KEY_F10 = 299, // Key: F10
- KEY_F11 = 300, // Key: F11
- KEY_F12 = 301, // Key: F12
- KEY_LEFT_SHIFT = 340, // Key: Shift left
- KEY_LEFT_CONTROL = 341, // Key: Control left
- KEY_LEFT_ALT = 342, // Key: Alt left
- KEY_LEFT_SUPER = 343, // Key: Super left
- KEY_RIGHT_SHIFT = 344, // Key: Shift right
- KEY_RIGHT_CONTROL = 345, // Key: Control right
- KEY_RIGHT_ALT = 346, // Key: Alt right
- KEY_RIGHT_SUPER = 347, // Key: Super right
- KEY_KB_MENU = 348, // Key: KB menu
- // Keypad keys
- KEY_KP_0 = 320, // Key: Keypad 0
- KEY_KP_1 = 321, // Key: Keypad 1
- KEY_KP_2 = 322, // Key: Keypad 2
- KEY_KP_3 = 323, // Key: Keypad 3
- KEY_KP_4 = 324, // Key: Keypad 4
- KEY_KP_5 = 325, // Key: Keypad 5
- KEY_KP_6 = 326, // Key: Keypad 6
- KEY_KP_7 = 327, // Key: Keypad 7
- KEY_KP_8 = 328, // Key: Keypad 8
- KEY_KP_9 = 329, // Key: Keypad 9
- KEY_KP_DECIMAL = 330, // Key: Keypad .
- KEY_KP_DIVIDE = 331, // Key: Keypad /
- KEY_KP_MULTIPLY = 332, // Key: Keypad *
- KEY_KP_SUBTRACT = 333, // Key: Keypad -
- KEY_KP_ADD = 334, // Key: Keypad +
- KEY_KP_ENTER = 335, // Key: Keypad Enter
- KEY_KP_EQUAL = 336, // Key: Keypad =
- // Android key buttons
- KEY_BACK = 4, // Key: Android back button
- KEY_MENU = 82, // Key: Android menu button
- KEY_VOLUME_UP = 24, // Key: Android volume up button
- KEY_VOLUME_DOWN = 25 // Key: Android volume down button
-} KeyboardKey;
-
-// Add backwards compatibility support for deprecated names
-#define MOUSE_LEFT_BUTTON MOUSE_BUTTON_LEFT
-#define MOUSE_RIGHT_BUTTON MOUSE_BUTTON_RIGHT
-#define MOUSE_MIDDLE_BUTTON MOUSE_BUTTON_MIDDLE
-
-// Mouse buttons
-typedef enum {
- MOUSE_BUTTON_LEFT = 0, // Mouse button left
- MOUSE_BUTTON_RIGHT = 1, // Mouse button right
- MOUSE_BUTTON_MIDDLE = 2, // Mouse button middle (pressed wheel)
- MOUSE_BUTTON_SIDE = 3, // Mouse button side (advanced mouse device)
- MOUSE_BUTTON_EXTRA = 4, // Mouse button extra (advanced mouse device)
- MOUSE_BUTTON_FORWARD = 5, // Mouse button forward (advanced mouse device)
- MOUSE_BUTTON_BACK = 6, // Mouse button back (advanced mouse device)
-} MouseButton;
-
-// Mouse cursor
-typedef enum {
- MOUSE_CURSOR_DEFAULT = 0, // Default pointer shape
- MOUSE_CURSOR_ARROW = 1, // Arrow shape
- MOUSE_CURSOR_IBEAM = 2, // Text writing cursor shape
- MOUSE_CURSOR_CROSSHAIR = 3, // Cross shape
- MOUSE_CURSOR_POINTING_HAND = 4, // Pointing hand cursor
- MOUSE_CURSOR_RESIZE_EW = 5, // Horizontal resize/move arrow shape
- MOUSE_CURSOR_RESIZE_NS = 6, // Vertical resize/move arrow shape
- MOUSE_CURSOR_RESIZE_NWSE = 7, // Top-left to bottom-right diagonal resize/move arrow shape
- MOUSE_CURSOR_RESIZE_NESW = 8, // The top-right to bottom-left diagonal resize/move arrow shape
- MOUSE_CURSOR_RESIZE_ALL = 9, // The omnidirectional resize/move cursor shape
- MOUSE_CURSOR_NOT_ALLOWED = 10 // The operation-not-allowed shape
-} MouseCursor;
-
-// Gamepad buttons
-typedef enum {
- GAMEPAD_BUTTON_UNKNOWN = 0, // Unknown button, just for error checking
- GAMEPAD_BUTTON_LEFT_FACE_UP, // Gamepad left DPAD up button
- GAMEPAD_BUTTON_LEFT_FACE_RIGHT, // Gamepad left DPAD right button
- GAMEPAD_BUTTON_LEFT_FACE_DOWN, // Gamepad left DPAD down button
- GAMEPAD_BUTTON_LEFT_FACE_LEFT, // Gamepad left DPAD left button
- GAMEPAD_BUTTON_RIGHT_FACE_UP, // Gamepad right button up (i.e. PS3: Triangle, Xbox: Y)
- GAMEPAD_BUTTON_RIGHT_FACE_RIGHT, // Gamepad right button right (i.e. PS3: Square, Xbox: X)
- GAMEPAD_BUTTON_RIGHT_FACE_DOWN, // Gamepad right button down (i.e. PS3: Cross, Xbox: A)
- GAMEPAD_BUTTON_RIGHT_FACE_LEFT, // Gamepad right button left (i.e. PS3: Circle, Xbox: B)
- GAMEPAD_BUTTON_LEFT_TRIGGER_1, // Gamepad top/back trigger left (first), it could be a trailing button
- GAMEPAD_BUTTON_LEFT_TRIGGER_2, // Gamepad top/back trigger left (second), it could be a trailing button
- GAMEPAD_BUTTON_RIGHT_TRIGGER_1, // Gamepad top/back trigger right (one), it could be a trailing button
- GAMEPAD_BUTTON_RIGHT_TRIGGER_2, // Gamepad top/back trigger right (second), it could be a trailing button
- GAMEPAD_BUTTON_MIDDLE_LEFT, // Gamepad center buttons, left one (i.e. PS3: Select)
- GAMEPAD_BUTTON_MIDDLE, // Gamepad center buttons, middle one (i.e. PS3: PS, Xbox: XBOX)
- GAMEPAD_BUTTON_MIDDLE_RIGHT, // Gamepad center buttons, right one (i.e. PS3: Start)
- GAMEPAD_BUTTON_LEFT_THUMB, // Gamepad joystick pressed button left
- GAMEPAD_BUTTON_RIGHT_THUMB // Gamepad joystick pressed button right
-} GamepadButton;
-
-// Gamepad axis
-typedef enum {
- GAMEPAD_AXIS_LEFT_X = 0, // Gamepad left stick X axis
- GAMEPAD_AXIS_LEFT_Y = 1, // Gamepad left stick Y axis
- GAMEPAD_AXIS_RIGHT_X = 2, // Gamepad right stick X axis
- GAMEPAD_AXIS_RIGHT_Y = 3, // Gamepad right stick Y axis
- GAMEPAD_AXIS_LEFT_TRIGGER = 4, // Gamepad back trigger left, pressure level: [1..-1]
- GAMEPAD_AXIS_RIGHT_TRIGGER = 5 // Gamepad back trigger right, pressure level: [1..-1]
-} GamepadAxis;
-
-// Material map index
-typedef enum {
- MATERIAL_MAP_ALBEDO = 0, // Albedo material (same as: MATERIAL_MAP_DIFFUSE)
- MATERIAL_MAP_METALNESS, // Metalness material (same as: MATERIAL_MAP_SPECULAR)
- MATERIAL_MAP_NORMAL, // Normal material
- MATERIAL_MAP_ROUGHNESS, // Roughness material
- MATERIAL_MAP_OCCLUSION, // Ambient occlusion material
- MATERIAL_MAP_EMISSION, // Emission material
- MATERIAL_MAP_HEIGHT, // Heightmap material
- MATERIAL_MAP_CUBEMAP, // Cubemap material (NOTE: Uses GL_TEXTURE_CUBE_MAP)
- MATERIAL_MAP_IRRADIANCE, // Irradiance material (NOTE: Uses GL_TEXTURE_CUBE_MAP)
- MATERIAL_MAP_PREFILTER, // Prefilter material (NOTE: Uses GL_TEXTURE_CUBE_MAP)
- MATERIAL_MAP_BRDF // Brdf material
-} MaterialMapIndex;
-
-#define MATERIAL_MAP_DIFFUSE MATERIAL_MAP_ALBEDO
-#define MATERIAL_MAP_SPECULAR MATERIAL_MAP_METALNESS
-
-// Shader location index
-typedef enum {
- SHADER_LOC_VERTEX_POSITION = 0, // Shader location: vertex attribute: position
- SHADER_LOC_VERTEX_TEXCOORD01, // Shader location: vertex attribute: texcoord01
- SHADER_LOC_VERTEX_TEXCOORD02, // Shader location: vertex attribute: texcoord02
- SHADER_LOC_VERTEX_NORMAL, // Shader location: vertex attribute: normal
- SHADER_LOC_VERTEX_TANGENT, // Shader location: vertex attribute: tangent
- SHADER_LOC_VERTEX_COLOR, // Shader location: vertex attribute: color
- SHADER_LOC_MATRIX_MVP, // Shader location: matrix uniform: model-view-projection
- SHADER_LOC_MATRIX_VIEW, // Shader location: matrix uniform: view (camera transform)
- SHADER_LOC_MATRIX_PROJECTION, // Shader location: matrix uniform: projection
- SHADER_LOC_MATRIX_MODEL, // Shader location: matrix uniform: model (transform)
- SHADER_LOC_MATRIX_NORMAL, // Shader location: matrix uniform: normal
- SHADER_LOC_VECTOR_VIEW, // Shader location: vector uniform: view
- SHADER_LOC_COLOR_DIFFUSE, // Shader location: vector uniform: diffuse color
- SHADER_LOC_COLOR_SPECULAR, // Shader location: vector uniform: specular color
- SHADER_LOC_COLOR_AMBIENT, // Shader location: vector uniform: ambient color
- SHADER_LOC_MAP_ALBEDO, // Shader location: sampler2d texture: albedo (same as: SHADER_LOC_MAP_DIFFUSE)
- SHADER_LOC_MAP_METALNESS, // Shader location: sampler2d texture: metalness (same as: SHADER_LOC_MAP_SPECULAR)
- SHADER_LOC_MAP_NORMAL, // Shader location: sampler2d texture: normal
- SHADER_LOC_MAP_ROUGHNESS, // Shader location: sampler2d texture: roughness
- SHADER_LOC_MAP_OCCLUSION, // Shader location: sampler2d texture: occlusion
- SHADER_LOC_MAP_EMISSION, // Shader location: sampler2d texture: emission
- SHADER_LOC_MAP_HEIGHT, // Shader location: sampler2d texture: height
- SHADER_LOC_MAP_CUBEMAP, // Shader location: samplerCube texture: cubemap
- SHADER_LOC_MAP_IRRADIANCE, // Shader location: samplerCube texture: irradiance
- SHADER_LOC_MAP_PREFILTER, // Shader location: samplerCube texture: prefilter
- SHADER_LOC_MAP_BRDF // Shader location: sampler2d texture: brdf
-} ShaderLocationIndex;
-
-#define SHADER_LOC_MAP_DIFFUSE SHADER_LOC_MAP_ALBEDO
-#define SHADER_LOC_MAP_SPECULAR SHADER_LOC_MAP_METALNESS
-
-// Shader uniform data type
-typedef enum {
- SHADER_UNIFORM_FLOAT = 0, // Shader uniform type: float
- SHADER_UNIFORM_VEC2, // Shader uniform type: vec2 (2 float)
- SHADER_UNIFORM_VEC3, // Shader uniform type: vec3 (3 float)
- SHADER_UNIFORM_VEC4, // Shader uniform type: vec4 (4 float)
- SHADER_UNIFORM_INT, // Shader uniform type: int
- SHADER_UNIFORM_IVEC2, // Shader uniform type: ivec2 (2 int)
- SHADER_UNIFORM_IVEC3, // Shader uniform type: ivec3 (3 int)
- SHADER_UNIFORM_IVEC4, // Shader uniform type: ivec4 (4 int)
- SHADER_UNIFORM_SAMPLER2D // Shader uniform type: sampler2d
-} ShaderUniformDataType;
-
-// Shader attribute data types
-typedef enum {
- SHADER_ATTRIB_FLOAT = 0, // Shader attribute type: float
- SHADER_ATTRIB_VEC2, // Shader attribute type: vec2 (2 float)
- SHADER_ATTRIB_VEC3, // Shader attribute type: vec3 (3 float)
- SHADER_ATTRIB_VEC4 // Shader attribute type: vec4 (4 float)
-} ShaderAttributeDataType;
-
-// Pixel formats
-// NOTE: Support depends on OpenGL version and platform
-typedef enum {
- PIXELFORMAT_UNCOMPRESSED_GRAYSCALE = 1, // 8 bit per pixel (no alpha)
- PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA, // 8*2 bpp (2 channels)
- PIXELFORMAT_UNCOMPRESSED_R5G6B5, // 16 bpp
- PIXELFORMAT_UNCOMPRESSED_R8G8B8, // 24 bpp
- PIXELFORMAT_UNCOMPRESSED_R5G5B5A1, // 16 bpp (1 bit alpha)
- PIXELFORMAT_UNCOMPRESSED_R4G4B4A4, // 16 bpp (4 bit alpha)
- PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, // 32 bpp
- PIXELFORMAT_UNCOMPRESSED_R32, // 32 bpp (1 channel - float)
- PIXELFORMAT_UNCOMPRESSED_R32G32B32, // 32*3 bpp (3 channels - float)
- PIXELFORMAT_UNCOMPRESSED_R32G32B32A32, // 32*4 bpp (4 channels - float)
- PIXELFORMAT_UNCOMPRESSED_R16, // 16 bpp (1 channel - half float)
- PIXELFORMAT_UNCOMPRESSED_R16G16B16, // 16*3 bpp (3 channels - half float)
- PIXELFORMAT_UNCOMPRESSED_R16G16B16A16, // 16*4 bpp (4 channels - half float)
- PIXELFORMAT_COMPRESSED_DXT1_RGB, // 4 bpp (no alpha)
- PIXELFORMAT_COMPRESSED_DXT1_RGBA, // 4 bpp (1 bit alpha)
- PIXELFORMAT_COMPRESSED_DXT3_RGBA, // 8 bpp
- PIXELFORMAT_COMPRESSED_DXT5_RGBA, // 8 bpp
- PIXELFORMAT_COMPRESSED_ETC1_RGB, // 4 bpp
- PIXELFORMAT_COMPRESSED_ETC2_RGB, // 4 bpp
- PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA, // 8 bpp
- PIXELFORMAT_COMPRESSED_PVRT_RGB, // 4 bpp
- PIXELFORMAT_COMPRESSED_PVRT_RGBA, // 4 bpp
- PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA, // 8 bpp
- PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA // 2 bpp
-} PixelFormat;
-
-// Texture parameters: filter mode
-// NOTE 1: Filtering considers mipmaps if available in the texture
-// NOTE 2: Filter is accordingly set for minification and magnification
-typedef enum {
- TEXTURE_FILTER_POINT = 0, // No filter, just pixel approximation
- TEXTURE_FILTER_BILINEAR, // Linear filtering
- TEXTURE_FILTER_TRILINEAR, // Trilinear filtering (linear with mipmaps)
- TEXTURE_FILTER_ANISOTROPIC_4X, // Anisotropic filtering 4x
- TEXTURE_FILTER_ANISOTROPIC_8X, // Anisotropic filtering 8x
- TEXTURE_FILTER_ANISOTROPIC_16X, // Anisotropic filtering 16x
-} TextureFilter;
-
-// Texture parameters: wrap mode
-typedef enum {
- TEXTURE_WRAP_REPEAT = 0, // Repeats texture in tiled mode
- TEXTURE_WRAP_CLAMP, // Clamps texture to edge pixel in tiled mode
- TEXTURE_WRAP_MIRROR_REPEAT, // Mirrors and repeats the texture in tiled mode
- TEXTURE_WRAP_MIRROR_CLAMP // Mirrors and clamps to border the texture in tiled mode
-} TextureWrap;
-
-// Cubemap layouts
-typedef enum {
- CUBEMAP_LAYOUT_AUTO_DETECT = 0, // Automatically detect layout type
- CUBEMAP_LAYOUT_LINE_VERTICAL, // Layout is defined by a vertical line with faces
- CUBEMAP_LAYOUT_LINE_HORIZONTAL, // Layout is defined by a horizontal line with faces
- CUBEMAP_LAYOUT_CROSS_THREE_BY_FOUR, // Layout is defined by a 3x4 cross with cubemap faces
- CUBEMAP_LAYOUT_CROSS_FOUR_BY_THREE, // Layout is defined by a 4x3 cross with cubemap faces
- CUBEMAP_LAYOUT_PANORAMA // Layout is defined by a panorama image (equirrectangular map)
-} CubemapLayout;
-
-// Font type, defines generation method
-typedef enum {
- FONT_DEFAULT = 0, // Default font generation, anti-aliased
- FONT_BITMAP, // Bitmap font generation, no anti-aliasing
- FONT_SDF // SDF font generation, requires external shader
-} FontType;
-
-// Color blending modes (pre-defined)
-typedef enum {
- BLEND_ALPHA = 0, // Blend textures considering alpha (default)
- BLEND_ADDITIVE, // Blend textures adding colors
- BLEND_MULTIPLIED, // Blend textures multiplying colors
- BLEND_ADD_COLORS, // Blend textures adding colors (alternative)
- BLEND_SUBTRACT_COLORS, // Blend textures subtracting colors (alternative)
- BLEND_ALPHA_PREMULTIPLY, // Blend premultiplied textures considering alpha
- BLEND_CUSTOM, // Blend textures using custom src/dst factors (use rlSetBlendFactors())
- BLEND_CUSTOM_SEPARATE // Blend textures using custom rgb/alpha separate src/dst factors (use rlSetBlendFactorsSeparate())
-} BlendMode;
-
-// Gesture
-// NOTE: Provided as bit-wise flags to enable only desired gestures
-typedef enum {
- GESTURE_NONE = 0, // No gesture
- GESTURE_TAP = 1, // Tap gesture
- GESTURE_DOUBLETAP = 2, // Double tap gesture
- GESTURE_HOLD = 4, // Hold gesture
- GESTURE_DRAG = 8, // Drag gesture
- GESTURE_SWIPE_RIGHT = 16, // Swipe right gesture
- GESTURE_SWIPE_LEFT = 32, // Swipe left gesture
- GESTURE_SWIPE_UP = 64, // Swipe up gesture
- GESTURE_SWIPE_DOWN = 128, // Swipe down gesture
- GESTURE_PINCH_IN = 256, // Pinch in gesture
- GESTURE_PINCH_OUT = 512 // Pinch out gesture
-} Gesture;
-
-// Camera system modes
-typedef enum {
- CAMERA_CUSTOM = 0, // Custom camera
- CAMERA_FREE, // Free camera
- CAMERA_ORBITAL, // Orbital camera
- CAMERA_FIRST_PERSON, // First person camera
- CAMERA_THIRD_PERSON // Third person camera
-} CameraMode;
-
-// Camera projection
-typedef enum {
- CAMERA_PERSPECTIVE = 0, // Perspective projection
- CAMERA_ORTHOGRAPHIC // Orthographic projection
-} CameraProjection;
-
-// N-patch layout
-typedef enum {
- NPATCH_NINE_PATCH = 0, // Npatch layout: 3x3 tiles
- NPATCH_THREE_PATCH_VERTICAL, // Npatch layout: 1x3 tiles
- NPATCH_THREE_PATCH_HORIZONTAL // Npatch layout: 3x1 tiles
-} NPatchLayout;
-
-// Callbacks to hook some internal functions
-// WARNING: These callbacks are intended for advance users
-typedef void (*TraceLogCallback)(int logLevel, const char *text, va_list args); // Logging: Redirect trace log messages
-typedef unsigned char *(*LoadFileDataCallback)(const char *fileName, int *dataSize); // FileIO: Load binary data
-typedef bool (*SaveFileDataCallback)(const char *fileName, void *data, int dataSize); // FileIO: Save binary data
-typedef char *(*LoadFileTextCallback)(const char *fileName); // FileIO: Load text data
-typedef bool (*SaveFileTextCallback)(const char *fileName, char *text); // FileIO: Save text data
-
-//------------------------------------------------------------------------------------
-// Global Variables Definition
-//------------------------------------------------------------------------------------
-// It's lonely here...
-
-//------------------------------------------------------------------------------------
-// Window and Graphics Device Functions (Module: core)
-//------------------------------------------------------------------------------------
-
-#if defined(__cplusplus)
-extern "C" { // Prevents name mangling of functions
-#endif
-
-// Window-related functions
-RLAPI void InitWindow(int width, int height, const char *title); // Initialize window and OpenGL context
-RLAPI void CloseWindow(void); // Close window and unload OpenGL context
-RLAPI bool WindowShouldClose(void); // Check if application should close (KEY_ESCAPE pressed or windows close icon clicked)
-RLAPI bool IsWindowReady(void); // Check if window has been initialized successfully
-RLAPI bool IsWindowFullscreen(void); // Check if window is currently fullscreen
-RLAPI bool IsWindowHidden(void); // Check if window is currently hidden (only PLATFORM_DESKTOP)
-RLAPI bool IsWindowMinimized(void); // Check if window is currently minimized (only PLATFORM_DESKTOP)
-RLAPI bool IsWindowMaximized(void); // Check if window is currently maximized (only PLATFORM_DESKTOP)
-RLAPI bool IsWindowFocused(void); // Check if window is currently focused (only PLATFORM_DESKTOP)
-RLAPI bool IsWindowResized(void); // Check if window has been resized last frame
-RLAPI bool IsWindowState(unsigned int flag); // Check if one specific window flag is enabled
-RLAPI void SetWindowState(unsigned int flags); // Set window configuration state using flags (only PLATFORM_DESKTOP)
-RLAPI void ClearWindowState(unsigned int flags); // Clear window configuration state flags
-RLAPI void ToggleFullscreen(void); // Toggle window state: fullscreen/windowed (only PLATFORM_DESKTOP)
-RLAPI void ToggleBorderlessWindowed(void); // Toggle window state: borderless windowed (only PLATFORM_DESKTOP)
-RLAPI void MaximizeWindow(void); // Set window state: maximized, if resizable (only PLATFORM_DESKTOP)
-RLAPI void MinimizeWindow(void); // Set window state: minimized, if resizable (only PLATFORM_DESKTOP)
-RLAPI void RestoreWindow(void); // Set window state: not minimized/maximized (only PLATFORM_DESKTOP)
-RLAPI void SetWindowIcon(Image image); // Set icon for window (single image, RGBA 32bit, only PLATFORM_DESKTOP)
-RLAPI void SetWindowIcons(Image *images, int count); // Set icon for window (multiple images, RGBA 32bit, only PLATFORM_DESKTOP)
-RLAPI void SetWindowTitle(const char *title); // Set title for window (only PLATFORM_DESKTOP and PLATFORM_WEB)
-RLAPI void SetWindowPosition(int x, int y); // Set window position on screen (only PLATFORM_DESKTOP)
-RLAPI void SetWindowMonitor(int monitor); // Set monitor for the current window
-RLAPI void SetWindowMinSize(int width, int height); // Set window minimum dimensions (for FLAG_WINDOW_RESIZABLE)
-RLAPI void SetWindowMaxSize(int width, int height); // Set window maximum dimensions (for FLAG_WINDOW_RESIZABLE)
-RLAPI void SetWindowSize(int width, int height); // Set window dimensions
-RLAPI void SetWindowOpacity(float opacity); // Set window opacity [0.0f..1.0f] (only PLATFORM_DESKTOP)
-RLAPI void SetWindowFocused(void); // Set window focused (only PLATFORM_DESKTOP)
-RLAPI void *GetWindowHandle(void); // Get native window handle
-RLAPI int GetScreenWidth(void); // Get current screen width
-RLAPI int GetScreenHeight(void); // Get current screen height
-RLAPI int GetRenderWidth(void); // Get current render width (it considers HiDPI)
-RLAPI int GetRenderHeight(void); // Get current render height (it considers HiDPI)
-RLAPI int GetMonitorCount(void); // Get number of connected monitors
-RLAPI int GetCurrentMonitor(void); // Get current connected monitor
-RLAPI Vector2 GetMonitorPosition(int monitor); // Get specified monitor position
-RLAPI int GetMonitorWidth(int monitor); // Get specified monitor width (current video mode used by monitor)
-RLAPI int GetMonitorHeight(int monitor); // Get specified monitor height (current video mode used by monitor)
-RLAPI int GetMonitorPhysicalWidth(int monitor); // Get specified monitor physical width in millimetres
-RLAPI int GetMonitorPhysicalHeight(int monitor); // Get specified monitor physical height in millimetres
-RLAPI int GetMonitorRefreshRate(int monitor); // Get specified monitor refresh rate
-RLAPI Vector2 GetWindowPosition(void); // Get window position XY on monitor
-RLAPI Vector2 GetWindowScaleDPI(void); // Get window scale DPI factor
-RLAPI const char *GetMonitorName(int monitor); // Get the human-readable, UTF-8 encoded name of the specified monitor
-RLAPI void SetClipboardText(const char *text); // Set clipboard text content
-RLAPI const char *GetClipboardText(void); // Get clipboard text content
-RLAPI void EnableEventWaiting(void); // Enable waiting for events on EndDrawing(), no automatic event polling
-RLAPI void DisableEventWaiting(void); // Disable waiting for events on EndDrawing(), automatic events polling
-
-// Cursor-related functions
-RLAPI void ShowCursor(void); // Shows cursor
-RLAPI void HideCursor(void); // Hides cursor
-RLAPI bool IsCursorHidden(void); // Check if cursor is not visible
-RLAPI void EnableCursor(void); // Enables cursor (unlock cursor)
-RLAPI void DisableCursor(void); // Disables cursor (lock cursor)
-RLAPI bool IsCursorOnScreen(void); // Check if cursor is on the screen
-
-// Drawing-related functions
-RLAPI void ClearBackground(Color color); // Set background color (framebuffer clear color)
-RLAPI void BeginDrawing(void); // Setup canvas (framebuffer) to start drawing
-RLAPI void EndDrawing(void); // End canvas drawing and swap buffers (double buffering)
-RLAPI void BeginMode2D(Camera2D camera); // Begin 2D mode with custom camera (2D)
-RLAPI void EndMode2D(void); // Ends 2D mode with custom camera
-RLAPI void BeginMode3D(Camera3D camera); // Begin 3D mode with custom camera (3D)
-RLAPI void EndMode3D(void); // Ends 3D mode and returns to default 2D orthographic mode
-RLAPI void BeginTextureMode(RenderTexture2D target); // Begin drawing to render texture
-RLAPI void EndTextureMode(void); // Ends drawing to render texture
-RLAPI void BeginShaderMode(Shader shader); // Begin custom shader drawing
-RLAPI void EndShaderMode(void); // End custom shader drawing (use default shader)
-RLAPI void BeginBlendMode(int mode); // Begin blending mode (alpha, additive, multiplied, subtract, custom)
-RLAPI void EndBlendMode(void); // End blending mode (reset to default: alpha blending)
-RLAPI void BeginScissorMode(int x, int y, int width, int height); // Begin scissor mode (define screen area for following drawing)
-RLAPI void EndScissorMode(void); // End scissor mode
-RLAPI void BeginVrStereoMode(VrStereoConfig config); // Begin stereo rendering (requires VR simulator)
-RLAPI void EndVrStereoMode(void); // End stereo rendering (requires VR simulator)
-
-// VR stereo config functions for VR simulator
-RLAPI VrStereoConfig LoadVrStereoConfig(VrDeviceInfo device); // Load VR stereo config for VR simulator device parameters
-RLAPI void UnloadVrStereoConfig(VrStereoConfig config); // Unload VR stereo config
-
-// Shader management functions
-// NOTE: Shader functionality is not available on OpenGL 1.1
-RLAPI Shader LoadShader(const char *vsFileName, const char *fsFileName); // Load shader from files and bind default locations
-RLAPI Shader LoadShaderFromMemory(const char *vsCode, const char *fsCode); // Load shader from code strings and bind default locations
-RLAPI bool IsShaderReady(Shader shader); // Check if a shader is ready
-RLAPI int GetShaderLocation(Shader shader, const char *uniformName); // Get shader uniform location
-RLAPI int GetShaderLocationAttrib(Shader shader, const char *attribName); // Get shader attribute location
-RLAPI void SetShaderValue(Shader shader, int locIndex, const void *value, int uniformType); // Set shader uniform value
-RLAPI void SetShaderValueV(Shader shader, int locIndex, const void *value, int uniformType, int count); // Set shader uniform value vector
-RLAPI void SetShaderValueMatrix(Shader shader, int locIndex, Matrix mat); // Set shader uniform value (matrix 4x4)
-RLAPI void SetShaderValueTexture(Shader shader, int locIndex, Texture2D texture); // Set shader uniform value for texture (sampler2d)
-RLAPI void UnloadShader(Shader shader); // Unload shader from GPU memory (VRAM)
-
-// Screen-space-related functions
-RLAPI Ray GetMouseRay(Vector2 mousePosition, Camera camera); // Get a ray trace from mouse position
-RLAPI Matrix GetCameraMatrix(Camera camera); // Get camera transform matrix (view matrix)
-RLAPI Matrix GetCameraMatrix2D(Camera2D camera); // Get camera 2d transform matrix
-RLAPI Vector2 GetWorldToScreen(Vector3 position, Camera camera); // Get the screen space position for a 3d world space position
-RLAPI Vector2 GetScreenToWorld2D(Vector2 position, Camera2D camera); // Get the world space position for a 2d camera screen space position
-RLAPI Vector2 GetWorldToScreenEx(Vector3 position, Camera camera, int width, int height); // Get size position for a 3d world space position
-RLAPI Vector2 GetWorldToScreen2D(Vector2 position, Camera2D camera); // Get the screen space position for a 2d camera world space position
-
-// Timing-related functions
-RLAPI void SetTargetFPS(int fps); // Set target FPS (maximum)
-RLAPI float GetFrameTime(void); // Get time in seconds for last frame drawn (delta time)
-RLAPI double GetTime(void); // Get elapsed time in seconds since InitWindow()
-RLAPI int GetFPS(void); // Get current FPS
-
-// Custom frame control functions
-// NOTE: Those functions are intended for advance users that want full control over the frame processing
-// By default EndDrawing() does this job: draws everything + SwapScreenBuffer() + manage frame timing + PollInputEvents()
-// To avoid that behaviour and control frame processes manually, enable in config.h: SUPPORT_CUSTOM_FRAME_CONTROL
-RLAPI void SwapScreenBuffer(void); // Swap back buffer with front buffer (screen drawing)
-RLAPI void PollInputEvents(void); // Register all input events
-RLAPI void WaitTime(double seconds); // Wait for some time (halt program execution)
-
-// Random values generation functions
-RLAPI void SetRandomSeed(unsigned int seed); // Set the seed for the random number generator
-RLAPI int GetRandomValue(int min, int max); // Get a random value between min and max (both included)
-RLAPI int *LoadRandomSequence(unsigned int count, int min, int max); // Load random values sequence, no values repeated
-RLAPI void UnloadRandomSequence(int *sequence); // Unload random values sequence
-
-// Misc. functions
-RLAPI void TakeScreenshot(const char *fileName); // Takes a screenshot of current screen (filename extension defines format)
-RLAPI void SetConfigFlags(unsigned int flags); // Setup init configuration flags (view FLAGS)
-RLAPI void OpenURL(const char *url); // Open URL with default system browser (if available)
-
-// NOTE: Following functions implemented in module [utils]
-//------------------------------------------------------------------
-RLAPI void TraceLog(int logLevel, const char *text, ...); // Show trace log messages (LOG_DEBUG, LOG_INFO, LOG_WARNING, LOG_ERROR...)
-RLAPI void SetTraceLogLevel(int logLevel); // Set the current threshold (minimum) log level
-RLAPI void *MemAlloc(unsigned int size); // Internal memory allocator
-RLAPI void *MemRealloc(void *ptr, unsigned int size); // Internal memory reallocator
-RLAPI void MemFree(void *ptr); // Internal memory free
-
-// Set custom callbacks
-// WARNING: Callbacks setup is intended for advance users
-RLAPI void SetTraceLogCallback(TraceLogCallback callback); // Set custom trace log
-RLAPI void SetLoadFileDataCallback(LoadFileDataCallback callback); // Set custom file binary data loader
-RLAPI void SetSaveFileDataCallback(SaveFileDataCallback callback); // Set custom file binary data saver
-RLAPI void SetLoadFileTextCallback(LoadFileTextCallback callback); // Set custom file text data loader
-RLAPI void SetSaveFileTextCallback(SaveFileTextCallback callback); // Set custom file text data saver
-
-// Files management functions
-RLAPI unsigned char *LoadFileData(const char *fileName, int *dataSize); // Load file data as byte array (read)
-RLAPI void UnloadFileData(unsigned char *data); // Unload file data allocated by LoadFileData()
-RLAPI bool SaveFileData(const char *fileName, void *data, int dataSize); // Save data to file from byte array (write), returns true on success
-RLAPI bool ExportDataAsCode(const unsigned char *data, int dataSize, const char *fileName); // Export data to code (.h), returns true on success
-RLAPI char *LoadFileText(const char *fileName); // Load text data from file (read), returns a '\0' terminated string
-RLAPI void UnloadFileText(char *text); // Unload file text data allocated by LoadFileText()
-RLAPI bool SaveFileText(const char *fileName, char *text); // Save text data to file (write), string must be '\0' terminated, returns true on success
-//------------------------------------------------------------------
-
-// File system functions
-RLAPI bool FileExists(const char *fileName); // Check if file exists
-RLAPI bool DirectoryExists(const char *dirPath); // Check if a directory path exists
-RLAPI bool IsFileExtension(const char *fileName, const char *ext); // Check file extension (including point: .png, .wav)
-RLAPI int GetFileLength(const char *fileName); // Get file length in bytes (NOTE: GetFileSize() conflicts with windows.h)
-RLAPI const char *GetFileExtension(const char *fileName); // Get pointer to extension for a filename string (includes dot: '.png')
-RLAPI const char *GetFileName(const char *filePath); // Get pointer to filename for a path string
-RLAPI const char *GetFileNameWithoutExt(const char *filePath); // Get filename string without extension (uses static string)
-RLAPI const char *GetDirectoryPath(const char *filePath); // Get full path for a given fileName with path (uses static string)
-RLAPI const char *GetPrevDirectoryPath(const char *dirPath); // Get previous directory path for a given path (uses static string)
-RLAPI const char *GetWorkingDirectory(void); // Get current working directory (uses static string)
-RLAPI const char *GetApplicationDirectory(void); // Get the directory of the running application (uses static string)
-RLAPI bool ChangeDirectory(const char *dir); // Change working directory, return true on success
-RLAPI bool IsPathFile(const char *path); // Check if a given path is a file or a directory
-RLAPI FilePathList LoadDirectoryFiles(const char *dirPath); // Load directory filepaths
-RLAPI FilePathList LoadDirectoryFilesEx(const char *basePath, const char *filter, bool scanSubdirs); // Load directory filepaths with extension filtering and recursive directory scan
-RLAPI void UnloadDirectoryFiles(FilePathList files); // Unload filepaths
-RLAPI bool IsFileDropped(void); // Check if a file has been dropped into window
-RLAPI FilePathList LoadDroppedFiles(void); // Load dropped filepaths
-RLAPI void UnloadDroppedFiles(FilePathList files); // Unload dropped filepaths
-RLAPI long GetFileModTime(const char *fileName); // Get file modification time (last write time)
-
-// Compression/Encoding functionality
-RLAPI unsigned char *CompressData(const unsigned char *data, int dataSize, int *compDataSize); // Compress data (DEFLATE algorithm), memory must be MemFree()
-RLAPI unsigned char *DecompressData(const unsigned char *compData, int compDataSize, int *dataSize); // Decompress data (DEFLATE algorithm), memory must be MemFree()
-RLAPI char *EncodeDataBase64(const unsigned char *data, int dataSize, int *outputSize); // Encode data to Base64 string, memory must be MemFree()
-RLAPI unsigned char *DecodeDataBase64(const unsigned char *data, int *outputSize); // Decode Base64 string data, memory must be MemFree()
-
-// Automation events functionality
-RLAPI AutomationEventList LoadAutomationEventList(const char *fileName); // Load automation events list from file, NULL for empty list, capacity = MAX_AUTOMATION_EVENTS
-RLAPI void UnloadAutomationEventList(AutomationEventList *list); // Unload automation events list from file
-RLAPI bool ExportAutomationEventList(AutomationEventList list, const char *fileName); // Export automation events list as text file
-RLAPI void SetAutomationEventList(AutomationEventList *list); // Set automation event list to record to
-RLAPI void SetAutomationEventBaseFrame(int frame); // Set automation event internal base frame to start recording
-RLAPI void StartAutomationEventRecording(void); // Start recording automation events (AutomationEventList must be set)
-RLAPI void StopAutomationEventRecording(void); // Stop recording automation events
-RLAPI void PlayAutomationEvent(AutomationEvent event); // Play a recorded automation event
-
-//------------------------------------------------------------------------------------
-// Input Handling Functions (Module: core)
-//------------------------------------------------------------------------------------
-
-// Input-related functions: keyboard
-RLAPI bool IsKeyPressed(int key); // Check if a key has been pressed once
-RLAPI bool IsKeyPressedRepeat(int key); // Check if a key has been pressed again (Only PLATFORM_DESKTOP)
-RLAPI bool IsKeyDown(int key); // Check if a key is being pressed
-RLAPI bool IsKeyReleased(int key); // Check if a key has been released once
-RLAPI bool IsKeyUp(int key); // Check if a key is NOT being pressed
-RLAPI int GetKeyPressed(void); // Get key pressed (keycode), call it multiple times for keys queued, returns 0 when the queue is empty
-RLAPI int GetCharPressed(void); // Get char pressed (unicode), call it multiple times for chars queued, returns 0 when the queue is empty
-RLAPI void SetExitKey(int key); // Set a custom key to exit program (default is ESC)
-
-// Input-related functions: gamepads
-RLAPI bool IsGamepadAvailable(int gamepad); // Check if a gamepad is available
-RLAPI const char *GetGamepadName(int gamepad); // Get gamepad internal name id
-RLAPI bool IsGamepadButtonPressed(int gamepad, int button); // Check if a gamepad button has been pressed once
-RLAPI bool IsGamepadButtonDown(int gamepad, int button); // Check if a gamepad button is being pressed
-RLAPI bool IsGamepadButtonReleased(int gamepad, int button); // Check if a gamepad button has been released once
-RLAPI bool IsGamepadButtonUp(int gamepad, int button); // Check if a gamepad button is NOT being pressed
-RLAPI int GetGamepadButtonPressed(void); // Get the last gamepad button pressed
-RLAPI int GetGamepadAxisCount(int gamepad); // Get gamepad axis count for a gamepad
-RLAPI float GetGamepadAxisMovement(int gamepad, int axis); // Get axis movement value for a gamepad axis
-RLAPI int SetGamepadMappings(const char *mappings); // Set internal gamepad mappings (SDL_GameControllerDB)
-
-// Input-related functions: mouse
-RLAPI bool IsMouseButtonPressed(int button); // Check if a mouse button has been pressed once
-RLAPI bool IsMouseButtonDown(int button); // Check if a mouse button is being pressed
-RLAPI bool IsMouseButtonReleased(int button); // Check if a mouse button has been released once
-RLAPI bool IsMouseButtonUp(int button); // Check if a mouse button is NOT being pressed
-RLAPI int GetMouseX(void); // Get mouse position X
-RLAPI int GetMouseY(void); // Get mouse position Y
-RLAPI Vector2 GetMousePosition(void); // Get mouse position XY
-RLAPI Vector2 GetMouseDelta(void); // Get mouse delta between frames
-RLAPI void SetMousePosition(int x, int y); // Set mouse position XY
-RLAPI void SetMouseOffset(int offsetX, int offsetY); // Set mouse offset
-RLAPI void SetMouseScale(float scaleX, float scaleY); // Set mouse scaling
-RLAPI float GetMouseWheelMove(void); // Get mouse wheel movement for X or Y, whichever is larger
-RLAPI Vector2 GetMouseWheelMoveV(void); // Get mouse wheel movement for both X and Y
-RLAPI void SetMouseCursor(int cursor); // Set mouse cursor
-
-// Input-related functions: touch
-RLAPI int GetTouchX(void); // Get touch position X for touch point 0 (relative to screen size)
-RLAPI int GetTouchY(void); // Get touch position Y for touch point 0 (relative to screen size)
-RLAPI Vector2 GetTouchPosition(int index); // Get touch position XY for a touch point index (relative to screen size)
-RLAPI int GetTouchPointId(int index); // Get touch point identifier for given index
-RLAPI int GetTouchPointCount(void); // Get number of touch points
-
-//------------------------------------------------------------------------------------
-// Gestures and Touch Handling Functions (Module: rgestures)
-//------------------------------------------------------------------------------------
-RLAPI void SetGesturesEnabled(unsigned int flags); // Enable a set of gestures using flags
-RLAPI bool IsGestureDetected(unsigned int gesture); // Check if a gesture have been detected
-RLAPI int GetGestureDetected(void); // Get latest detected gesture
-RLAPI float GetGestureHoldDuration(void); // Get gesture hold time in milliseconds
-RLAPI Vector2 GetGestureDragVector(void); // Get gesture drag vector
-RLAPI float GetGestureDragAngle(void); // Get gesture drag angle
-RLAPI Vector2 GetGesturePinchVector(void); // Get gesture pinch delta
-RLAPI float GetGesturePinchAngle(void); // Get gesture pinch angle
-
-//------------------------------------------------------------------------------------
-// Camera System Functions (Module: rcamera)
-//------------------------------------------------------------------------------------
-RLAPI void UpdateCamera(Camera *camera, int mode); // Update camera position for selected mode
-RLAPI void UpdateCameraPro(Camera *camera, Vector3 movement, Vector3 rotation, float zoom); // Update camera movement/rotation
-
-//------------------------------------------------------------------------------------
-// Basic Shapes Drawing Functions (Module: shapes)
-//------------------------------------------------------------------------------------
-// Set texture and rectangle to be used on shapes drawing
-// NOTE: It can be useful when using basic shapes and one single font,
-// defining a font char white rectangle would allow drawing everything in a single draw call
-RLAPI void SetShapesTexture(Texture2D texture, Rectangle source); // Set texture and rectangle to be used on shapes drawing
-
-// Basic shapes drawing functions
-RLAPI void DrawPixel(int posX, int posY, Color color); // Draw a pixel
-RLAPI void DrawPixelV(Vector2 position, Color color); // Draw a pixel (Vector version)
-RLAPI void DrawLine(int startPosX, int startPosY, int endPosX, int endPosY, Color color); // Draw a line
-RLAPI void DrawLineV(Vector2 startPos, Vector2 endPos, Color color); // Draw a line (using gl lines)
-RLAPI void DrawLineEx(Vector2 startPos, Vector2 endPos, float thick, Color color); // Draw a line (using triangles/quads)
-RLAPI void DrawLineStrip(Vector2 *points, int pointCount, Color color); // Draw lines sequence (using gl lines)
-RLAPI void DrawLineBezier(Vector2 startPos, Vector2 endPos, float thick, Color color); // Draw line segment cubic-bezier in-out interpolation
-RLAPI void DrawCircle(int centerX, int centerY, float radius, Color color); // Draw a color-filled circle
-RLAPI void DrawCircleSector(Vector2 center, float radius, float startAngle, float endAngle, int segments, Color color); // Draw a piece of a circle
-RLAPI void DrawCircleSectorLines(Vector2 center, float radius, float startAngle, float endAngle, int segments, Color color); // Draw circle sector outline
-RLAPI void DrawCircleGradient(int centerX, int centerY, float radius, Color color1, Color color2); // Draw a gradient-filled circle
-RLAPI void DrawCircleV(Vector2 center, float radius, Color color); // Draw a color-filled circle (Vector version)
-RLAPI void DrawCircleLines(int centerX, int centerY, float radius, Color color); // Draw circle outline
-RLAPI void DrawCircleLinesV(Vector2 center, float radius, Color color); // Draw circle outline (Vector version)
-RLAPI void DrawEllipse(int centerX, int centerY, float radiusH, float radiusV, Color color); // Draw ellipse
-RLAPI void DrawEllipseLines(int centerX, int centerY, float radiusH, float radiusV, Color color); // Draw ellipse outline
-RLAPI void DrawRing(Vector2 center, float innerRadius, float outerRadius, float startAngle, float endAngle, int segments, Color color); // Draw ring
-RLAPI void DrawRingLines(Vector2 center, float innerRadius, float outerRadius, float startAngle, float endAngle, int segments, Color color); // Draw ring outline
-RLAPI void DrawRectangle(int posX, int posY, int width, int height, Color color); // Draw a color-filled rectangle
-RLAPI void DrawRectangleV(Vector2 position, Vector2 size, Color color); // Draw a color-filled rectangle (Vector version)
-RLAPI void DrawRectangleRec(Rectangle rec, Color color); // Draw a color-filled rectangle
-RLAPI void DrawRectanglePro(Rectangle rec, Vector2 origin, float rotation, Color color); // Draw a color-filled rectangle with pro parameters
-RLAPI void DrawRectangleGradientV(int posX, int posY, int width, int height, Color color1, Color color2);// Draw a vertical-gradient-filled rectangle
-RLAPI void DrawRectangleGradientH(int posX, int posY, int width, int height, Color color1, Color color2);// Draw a horizontal-gradient-filled rectangle
-RLAPI void DrawRectangleGradientEx(Rectangle rec, Color col1, Color col2, Color col3, Color col4); // Draw a gradient-filled rectangle with custom vertex colors
-RLAPI void DrawRectangleLines(int posX, int posY, int width, int height, Color color); // Draw rectangle outline
-RLAPI void DrawRectangleLinesEx(Rectangle rec, float lineThick, Color color); // Draw rectangle outline with extended parameters
-RLAPI void DrawRectangleRounded(Rectangle rec, float roundness, int segments, Color color); // Draw rectangle with rounded edges
-RLAPI void DrawRectangleRoundedLines(Rectangle rec, float roundness, int segments, float lineThick, Color color); // Draw rectangle with rounded edges outline
-RLAPI void DrawTriangle(Vector2 v1, Vector2 v2, Vector2 v3, Color color); // Draw a color-filled triangle (vertex in counter-clockwise order!)
-RLAPI void DrawTriangleLines(Vector2 v1, Vector2 v2, Vector2 v3, Color color); // Draw triangle outline (vertex in counter-clockwise order!)
-RLAPI void DrawTriangleFan(Vector2 *points, int pointCount, Color color); // Draw a triangle fan defined by points (first vertex is the center)
-RLAPI void DrawTriangleStrip(Vector2 *points, int pointCount, Color color); // Draw a triangle strip defined by points
-RLAPI void DrawPoly(Vector2 center, int sides, float radius, float rotation, Color color); // Draw a regular polygon (Vector version)
-RLAPI void DrawPolyLines(Vector2 center, int sides, float radius, float rotation, Color color); // Draw a polygon outline of n sides
-RLAPI void DrawPolyLinesEx(Vector2 center, int sides, float radius, float rotation, float lineThick, Color color); // Draw a polygon outline of n sides with extended parameters
-
-// Splines drawing functions
-RLAPI void DrawSplineLinear(Vector2 *points, int pointCount, float thick, Color color); // Draw spline: Linear, minimum 2 points
-RLAPI void DrawSplineBasis(Vector2 *points, int pointCount, float thick, Color color); // Draw spline: B-Spline, minimum 4 points
-RLAPI void DrawSplineCatmullRom(Vector2 *points, int pointCount, float thick, Color color); // Draw spline: Catmull-Rom, minimum 4 points
-RLAPI void DrawSplineBezierQuadratic(Vector2 *points, int pointCount, float thick, Color color); // Draw spline: Quadratic Bezier, minimum 3 points (1 control point): [p1, c2, p3, c4...]
-RLAPI void DrawSplineBezierCubic(Vector2 *points, int pointCount, float thick, Color color); // Draw spline: Cubic Bezier, minimum 4 points (2 control points): [p1, c2, c3, p4, c5, c6...]
-RLAPI void DrawSplineSegmentLinear(Vector2 p1, Vector2 p2, float thick, Color color); // Draw spline segment: Linear, 2 points
-RLAPI void DrawSplineSegmentBasis(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float thick, Color color); // Draw spline segment: B-Spline, 4 points
-RLAPI void DrawSplineSegmentCatmullRom(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float thick, Color color); // Draw spline segment: Catmull-Rom, 4 points
-RLAPI void DrawSplineSegmentBezierQuadratic(Vector2 p1, Vector2 c2, Vector2 p3, float thick, Color color); // Draw spline segment: Quadratic Bezier, 2 points, 1 control point
-RLAPI void DrawSplineSegmentBezierCubic(Vector2 p1, Vector2 c2, Vector2 c3, Vector2 p4, float thick, Color color); // Draw spline segment: Cubic Bezier, 2 points, 2 control points
-
-// Spline segment point evaluation functions, for a given t [0.0f .. 1.0f]
-RLAPI Vector2 GetSplinePointLinear(Vector2 startPos, Vector2 endPos, float t); // Get (evaluate) spline point: Linear
-RLAPI Vector2 GetSplinePointBasis(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float t); // Get (evaluate) spline point: B-Spline
-RLAPI Vector2 GetSplinePointCatmullRom(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float t); // Get (evaluate) spline point: Catmull-Rom
-RLAPI Vector2 GetSplinePointBezierQuad(Vector2 p1, Vector2 c2, Vector2 p3, float t); // Get (evaluate) spline point: Quadratic Bezier
-RLAPI Vector2 GetSplinePointBezierCubic(Vector2 p1, Vector2 c2, Vector2 c3, Vector2 p4, float t); // Get (evaluate) spline point: Cubic Bezier
-
-// Basic shapes collision detection functions
-RLAPI bool CheckCollisionRecs(Rectangle rec1, Rectangle rec2); // Check collision between two rectangles
-RLAPI bool CheckCollisionCircles(Vector2 center1, float radius1, Vector2 center2, float radius2); // Check collision between two circles
-RLAPI bool CheckCollisionCircleRec(Vector2 center, float radius, Rectangle rec); // Check collision between circle and rectangle
-RLAPI bool CheckCollisionPointRec(Vector2 point, Rectangle rec); // Check if point is inside rectangle
-RLAPI bool CheckCollisionPointCircle(Vector2 point, Vector2 center, float radius); // Check if point is inside circle
-RLAPI bool CheckCollisionPointTriangle(Vector2 point, Vector2 p1, Vector2 p2, Vector2 p3); // Check if point is inside a triangle
-RLAPI bool CheckCollisionPointPoly(Vector2 point, Vector2 *points, int pointCount); // Check if point is within a polygon described by array of vertices
-RLAPI bool CheckCollisionLines(Vector2 startPos1, Vector2 endPos1, Vector2 startPos2, Vector2 endPos2, Vector2 *collisionPoint); // Check the collision between two lines defined by two points each, returns collision point by reference
-RLAPI bool CheckCollisionPointLine(Vector2 point, Vector2 p1, Vector2 p2, int threshold); // Check if point belongs to line created between two points [p1] and [p2] with defined margin in pixels [threshold]
-RLAPI Rectangle GetCollisionRec(Rectangle rec1, Rectangle rec2); // Get collision rectangle for two rectangles collision
-
-//------------------------------------------------------------------------------------
-// Texture Loading and Drawing Functions (Module: textures)
-//------------------------------------------------------------------------------------
-
-// Image loading functions
-// NOTE: These functions do not require GPU access
-RLAPI Image LoadImage(const char *fileName); // Load image from file into CPU memory (RAM)
-RLAPI Image LoadImageRaw(const char *fileName, int width, int height, int format, int headerSize); // Load image from RAW file data
-RLAPI Image LoadImageSvg(const char *fileNameOrString, int width, int height); // Load image from SVG file data or string with specified size
-RLAPI Image LoadImageAnim(const char *fileName, int *frames); // Load image sequence from file (frames appended to image.data)
-RLAPI Image LoadImageFromMemory(const char *fileType, const unsigned char *fileData, int dataSize); // Load image from memory buffer, fileType refers to extension: i.e. '.png'
-RLAPI Image LoadImageFromTexture(Texture2D texture); // Load image from GPU texture data
-RLAPI Image LoadImageFromScreen(void); // Load image from screen buffer and (screenshot)
-RLAPI bool IsImageReady(Image image); // Check if an image is ready
-RLAPI void UnloadImage(Image image); // Unload image from CPU memory (RAM)
-RLAPI bool ExportImage(Image image, const char *fileName); // Export image data to file, returns true on success
-RLAPI unsigned char *ExportImageToMemory(Image image, const char *fileType, int *fileSize); // Export image to memory buffer
-RLAPI bool ExportImageAsCode(Image image, const char *fileName); // Export image as code file defining an array of bytes, returns true on success
-
-// Image generation functions
-RLAPI Image GenImageColor(int width, int height, Color color); // Generate image: plain color
-RLAPI Image GenImageGradientLinear(int width, int height, int direction, Color start, Color end); // Generate image: linear gradient, direction in degrees [0..360], 0=Vertical gradient
-RLAPI Image GenImageGradientRadial(int width, int height, float density, Color inner, Color outer); // Generate image: radial gradient
-RLAPI Image GenImageGradientSquare(int width, int height, float density, Color inner, Color outer); // Generate image: square gradient
-RLAPI Image GenImageChecked(int width, int height, int checksX, int checksY, Color col1, Color col2); // Generate image: checked
-RLAPI Image GenImageWhiteNoise(int width, int height, float factor); // Generate image: white noise
-RLAPI Image GenImagePerlinNoise(int width, int height, int offsetX, int offsetY, float scale); // Generate image: perlin noise
-RLAPI Image GenImageCellular(int width, int height, int tileSize); // Generate image: cellular algorithm, bigger tileSize means bigger cells
-RLAPI Image GenImageText(int width, int height, const char *text); // Generate image: grayscale image from text data
-
-// Image manipulation functions
-RLAPI Image ImageCopy(Image image); // Create an image duplicate (useful for transformations)
-RLAPI Image ImageFromImage(Image image, Rectangle rec); // Create an image from another image piece
-RLAPI Image ImageText(const char *text, int fontSize, Color color); // Create an image from text (default font)
-RLAPI Image ImageTextEx(Font font, const char *text, float fontSize, float spacing, Color tint); // Create an image from text (custom sprite font)
-RLAPI void ImageFormat(Image *image, int newFormat); // Convert image data to desired format
-RLAPI void ImageToPOT(Image *image, Color fill); // Convert image to POT (power-of-two)
-RLAPI void ImageCrop(Image *image, Rectangle crop); // Crop an image to a defined rectangle
-RLAPI void ImageAlphaCrop(Image *image, float threshold); // Crop image depending on alpha value
-RLAPI void ImageAlphaClear(Image *image, Color color, float threshold); // Clear alpha channel to desired color
-RLAPI void ImageAlphaMask(Image *image, Image alphaMask); // Apply alpha mask to image
-RLAPI void ImageAlphaPremultiply(Image *image); // Premultiply alpha channel
-RLAPI void ImageBlurGaussian(Image *image, int blurSize); // Apply Gaussian blur using a box blur approximation
-RLAPI void ImageResize(Image *image, int newWidth, int newHeight); // Resize image (Bicubic scaling algorithm)
-RLAPI void ImageResizeNN(Image *image, int newWidth,int newHeight); // Resize image (Nearest-Neighbor scaling algorithm)
-RLAPI void ImageResizeCanvas(Image *image, int newWidth, int newHeight, int offsetX, int offsetY, Color fill); // Resize canvas and fill with color
-RLAPI void ImageMipmaps(Image *image); // Compute all mipmap levels for a provided image
-RLAPI void ImageDither(Image *image, int rBpp, int gBpp, int bBpp, int aBpp); // Dither image data to 16bpp or lower (Floyd-Steinberg dithering)
-RLAPI void ImageFlipVertical(Image *image); // Flip image vertically
-RLAPI void ImageFlipHorizontal(Image *image); // Flip image horizontally
-RLAPI void ImageRotate(Image *image, int degrees); // Rotate image by input angle in degrees (-359 to 359)
-RLAPI void ImageRotateCW(Image *image); // Rotate image clockwise 90deg
-RLAPI void ImageRotateCCW(Image *image); // Rotate image counter-clockwise 90deg
-RLAPI void ImageColorTint(Image *image, Color color); // Modify image color: tint
-RLAPI void ImageColorInvert(Image *image); // Modify image color: invert
-RLAPI void ImageColorGrayscale(Image *image); // Modify image color: grayscale
-RLAPI void ImageColorContrast(Image *image, float contrast); // Modify image color: contrast (-100 to 100)
-RLAPI void ImageColorBrightness(Image *image, int brightness); // Modify image color: brightness (-255 to 255)
-RLAPI void ImageColorReplace(Image *image, Color color, Color replace); // Modify image color: replace color
-RLAPI Color *LoadImageColors(Image image); // Load color data from image as a Color array (RGBA - 32bit)
-RLAPI Color *LoadImagePalette(Image image, int maxPaletteSize, int *colorCount); // Load colors palette from image as a Color array (RGBA - 32bit)
-RLAPI void UnloadImageColors(Color *colors); // Unload color data loaded with LoadImageColors()
-RLAPI void UnloadImagePalette(Color *colors); // Unload colors palette loaded with LoadImagePalette()
-RLAPI Rectangle GetImageAlphaBorder(Image image, float threshold); // Get image alpha border rectangle
-RLAPI Color GetImageColor(Image image, int x, int y); // Get image pixel color at (x, y) position
-
-// Image drawing functions
-// NOTE: Image software-rendering functions (CPU)
-RLAPI void ImageClearBackground(Image *dst, Color color); // Clear image background with given color
-RLAPI void ImageDrawPixel(Image *dst, int posX, int posY, Color color); // Draw pixel within an image
-RLAPI void ImageDrawPixelV(Image *dst, Vector2 position, Color color); // Draw pixel within an image (Vector version)
-RLAPI void ImageDrawLine(Image *dst, int startPosX, int startPosY, int endPosX, int endPosY, Color color); // Draw line within an image
-RLAPI void ImageDrawLineV(Image *dst, Vector2 start, Vector2 end, Color color); // Draw line within an image (Vector version)
-RLAPI void ImageDrawCircle(Image *dst, int centerX, int centerY, int radius, Color color); // Draw a filled circle within an image
-RLAPI void ImageDrawCircleV(Image *dst, Vector2 center, int radius, Color color); // Draw a filled circle within an image (Vector version)
-RLAPI void ImageDrawCircleLines(Image *dst, int centerX, int centerY, int radius, Color color); // Draw circle outline within an image
-RLAPI void ImageDrawCircleLinesV(Image *dst, Vector2 center, int radius, Color color); // Draw circle outline within an image (Vector version)
-RLAPI void ImageDrawRectangle(Image *dst, int posX, int posY, int width, int height, Color color); // Draw rectangle within an image
-RLAPI void ImageDrawRectangleV(Image *dst, Vector2 position, Vector2 size, Color color); // Draw rectangle within an image (Vector version)
-RLAPI void ImageDrawRectangleRec(Image *dst, Rectangle rec, Color color); // Draw rectangle within an image
-RLAPI void ImageDrawRectangleLines(Image *dst, Rectangle rec, int thick, Color color); // Draw rectangle lines within an image
-RLAPI void ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dstRec, Color tint); // Draw a source image within a destination image (tint applied to source)
-RLAPI void ImageDrawText(Image *dst, const char *text, int posX, int posY, int fontSize, Color color); // Draw text (using default font) within an image (destination)
-RLAPI void ImageDrawTextEx(Image *dst, Font font, const char *text, Vector2 position, float fontSize, float spacing, Color tint); // Draw text (custom sprite font) within an image (destination)
-
-// Texture loading functions
-// NOTE: These functions require GPU access
-RLAPI Texture2D LoadTexture(const char *fileName); // Load texture from file into GPU memory (VRAM)
-RLAPI Texture2D LoadTextureFromImage(Image image); // Load texture from image data
-RLAPI TextureCubemap LoadTextureCubemap(Image image, int layout); // Load cubemap from image, multiple image cubemap layouts supported
-RLAPI RenderTexture2D LoadRenderTexture(int width, int height); // Load texture for rendering (framebuffer)
-RLAPI bool IsTextureReady(Texture2D texture); // Check if a texture is ready
-RLAPI void UnloadTexture(Texture2D texture); // Unload texture from GPU memory (VRAM)
-RLAPI bool IsRenderTextureReady(RenderTexture2D target); // Check if a render texture is ready
-RLAPI void UnloadRenderTexture(RenderTexture2D target); // Unload render texture from GPU memory (VRAM)
-RLAPI void UpdateTexture(Texture2D texture, const void *pixels); // Update GPU texture with new data
-RLAPI void UpdateTextureRec(Texture2D texture, Rectangle rec, const void *pixels); // Update GPU texture rectangle with new data
-
-// Texture configuration functions
-RLAPI void GenTextureMipmaps(Texture2D *texture); // Generate GPU mipmaps for a texture
-RLAPI void SetTextureFilter(Texture2D texture, int filter); // Set texture scaling filter mode
-RLAPI void SetTextureWrap(Texture2D texture, int wrap); // Set texture wrapping mode
-
-// Texture drawing functions
-RLAPI void DrawTexture(Texture2D texture, int posX, int posY, Color tint); // Draw a Texture2D
-RLAPI void DrawTextureV(Texture2D texture, Vector2 position, Color tint); // Draw a Texture2D with position defined as Vector2
-RLAPI void DrawTextureEx(Texture2D texture, Vector2 position, float rotation, float scale, Color tint); // Draw a Texture2D with extended parameters
-RLAPI void DrawTextureRec(Texture2D texture, Rectangle source, Vector2 position, Color tint); // Draw a part of a texture defined by a rectangle
-RLAPI void DrawTexturePro(Texture2D texture, Rectangle source, Rectangle dest, Vector2 origin, float rotation, Color tint); // Draw a part of a texture defined by a rectangle with 'pro' parameters
-RLAPI void DrawTextureNPatch(Texture2D texture, NPatchInfo nPatchInfo, Rectangle dest, Vector2 origin, float rotation, Color tint); // Draws a texture (or part of it) that stretches or shrinks nicely
-
-// Color/pixel related functions
-RLAPI Color Fade(Color color, float alpha); // Get color with alpha applied, alpha goes from 0.0f to 1.0f
-RLAPI int ColorToInt(Color color); // Get hexadecimal value for a Color
-RLAPI Vector4 ColorNormalize(Color color); // Get Color normalized as float [0..1]
-RLAPI Color ColorFromNormalized(Vector4 normalized); // Get Color from normalized values [0..1]
-RLAPI Vector3 ColorToHSV(Color color); // Get HSV values for a Color, hue [0..360], saturation/value [0..1]
-RLAPI Color ColorFromHSV(float hue, float saturation, float value); // Get a Color from HSV values, hue [0..360], saturation/value [0..1]
-RLAPI Color ColorTint(Color color, Color tint); // Get color multiplied with another color
-RLAPI Color ColorBrightness(Color color, float factor); // Get color with brightness correction, brightness factor goes from -1.0f to 1.0f
-RLAPI Color ColorContrast(Color color, float contrast); // Get color with contrast correction, contrast values between -1.0f and 1.0f
-RLAPI Color ColorAlpha(Color color, float alpha); // Get color with alpha applied, alpha goes from 0.0f to 1.0f
-RLAPI Color ColorAlphaBlend(Color dst, Color src, Color tint); // Get src alpha-blended into dst color with tint
-RLAPI Color GetColor(unsigned int hexValue); // Get Color structure from hexadecimal value
-RLAPI Color GetPixelColor(void *srcPtr, int format); // Get Color from a source pixel pointer of certain format
-RLAPI void SetPixelColor(void *dstPtr, Color color, int format); // Set color formatted into destination pixel pointer
-RLAPI int GetPixelDataSize(int width, int height, int format); // Get pixel data size in bytes for certain format
-
-//------------------------------------------------------------------------------------
-// Font Loading and Text Drawing Functions (Module: text)
-//------------------------------------------------------------------------------------
-
-// Font loading/unloading functions
-RLAPI Font GetFontDefault(void); // Get the default Font
-RLAPI Font LoadFont(const char *fileName); // Load font from file into GPU memory (VRAM)
-RLAPI Font LoadFontEx(const char *fileName, int fontSize, int *codepoints, int codepointCount); // Load font from file with extended parameters, use NULL for codepoints and 0 for codepointCount to load the default character set
-RLAPI Font LoadFontFromImage(Image image, Color key, int firstChar); // Load font from Image (XNA style)
-RLAPI Font LoadFontFromMemory(const char *fileType, const unsigned char *fileData, int dataSize, int fontSize, int *codepoints, int codepointCount); // Load font from memory buffer, fileType refers to extension: i.e. '.ttf'
-RLAPI bool IsFontReady(Font font); // Check if a font is ready
-RLAPI GlyphInfo *LoadFontData(const unsigned char *fileData, int dataSize, int fontSize, int *codepoints, int codepointCount, int type); // Load font data for further use
-RLAPI Image GenImageFontAtlas(const GlyphInfo *glyphs, Rectangle **glyphRecs, int glyphCount, int fontSize, int padding, int packMethod); // Generate image font atlas using chars info
-RLAPI void UnloadFontData(GlyphInfo *glyphs, int glyphCount); // Unload font chars info data (RAM)
-RLAPI void UnloadFont(Font font); // Unload font from GPU memory (VRAM)
-RLAPI bool ExportFontAsCode(Font font, const char *fileName); // Export font as code file, returns true on success
-
-// Text drawing functions
-RLAPI void DrawFPS(int posX, int posY); // Draw current FPS
-RLAPI void DrawText(const char *text, int posX, int posY, int fontSize, Color color); // Draw text (using default font)
-RLAPI void DrawTextEx(Font font, const char *text, Vector2 position, float fontSize, float spacing, Color tint); // Draw text using font and additional parameters
-RLAPI void DrawTextPro(Font font, const char *text, Vector2 position, Vector2 origin, float rotation, float fontSize, float spacing, Color tint); // Draw text using Font and pro parameters (rotation)
-RLAPI void DrawTextCodepoint(Font font, int codepoint, Vector2 position, float fontSize, Color tint); // Draw one character (codepoint)
-RLAPI void DrawTextCodepoints(Font font, const int *codepoints, int codepointCount, Vector2 position, float fontSize, float spacing, Color tint); // Draw multiple character (codepoint)
-
-// Text font info functions
-RLAPI void SetTextLineSpacing(int spacing); // Set vertical line spacing when drawing with line-breaks
-RLAPI int MeasureText(const char *text, int fontSize); // Measure string width for default font
-RLAPI Vector2 MeasureTextEx(Font font, const char *text, float fontSize, float spacing); // Measure string size for Font
-RLAPI int GetGlyphIndex(Font font, int codepoint); // Get glyph index position in font for a codepoint (unicode character), fallback to '?' if not found
-RLAPI GlyphInfo GetGlyphInfo(Font font, int codepoint); // Get glyph font info data for a codepoint (unicode character), fallback to '?' if not found
-RLAPI Rectangle GetGlyphAtlasRec(Font font, int codepoint); // Get glyph rectangle in font atlas for a codepoint (unicode character), fallback to '?' if not found
-
-// Text codepoints management functions (unicode characters)
-RLAPI char *LoadUTF8(const int *codepoints, int length); // Load UTF-8 text encoded from codepoints array
-RLAPI void UnloadUTF8(char *text); // Unload UTF-8 text encoded from codepoints array
-RLAPI int *LoadCodepoints(const char *text, int *count); // Load all codepoints from a UTF-8 text string, codepoints count returned by parameter
-RLAPI void UnloadCodepoints(int *codepoints); // Unload codepoints data from memory
-RLAPI int GetCodepointCount(const char *text); // Get total number of codepoints in a UTF-8 encoded string
-RLAPI int GetCodepoint(const char *text, int *codepointSize); // Get next codepoint in a UTF-8 encoded string, 0x3f('?') is returned on failure
-RLAPI int GetCodepointNext(const char *text, int *codepointSize); // Get next codepoint in a UTF-8 encoded string, 0x3f('?') is returned on failure
-RLAPI int GetCodepointPrevious(const char *text, int *codepointSize); // Get previous codepoint in a UTF-8 encoded string, 0x3f('?') is returned on failure
-RLAPI const char *CodepointToUTF8(int codepoint, int *utf8Size); // Encode one codepoint into UTF-8 byte array (array length returned as parameter)
-
-// Text strings management functions (no UTF-8 strings, only byte chars)
-// NOTE: Some strings allocate memory internally for returned strings, just be careful!
-RLAPI int TextCopy(char *dst, const char *src); // Copy one string to another, returns bytes copied
-RLAPI bool TextIsEqual(const char *text1, const char *text2); // Check if two text string are equal
-RLAPI unsigned int TextLength(const char *text); // Get text length, checks for '\0' ending
-RLAPI const char *TextFormat(const char *text, ...); // Text formatting with variables (sprintf() style)
-RLAPI const char *TextSubtext(const char *text, int position, int length); // Get a piece of a text string
-RLAPI char *TextReplace(char *text, const char *replace, const char *by); // Replace text string (WARNING: memory must be freed!)
-RLAPI char *TextInsert(const char *text, const char *insert, int position); // Insert text in a position (WARNING: memory must be freed!)
-RLAPI const char *TextJoin(const char **textList, int count, const char *delimiter); // Join text strings with delimiter
-RLAPI const char **TextSplit(const char *text, char delimiter, int *count); // Split text into multiple strings
-RLAPI void TextAppend(char *text, const char *append, int *position); // Append text at specific position and move cursor!
-RLAPI int TextFindIndex(const char *text, const char *find); // Find first text occurrence within a string
-RLAPI const char *TextToUpper(const char *text); // Get upper case version of provided string
-RLAPI const char *TextToLower(const char *text); // Get lower case version of provided string
-RLAPI const char *TextToPascal(const char *text); // Get Pascal case notation version of provided string
-RLAPI int TextToInteger(const char *text); // Get integer value from text (negative values not supported)
-
-//------------------------------------------------------------------------------------
-// Basic 3d Shapes Drawing Functions (Module: models)
-//------------------------------------------------------------------------------------
-
-// Basic geometric 3D shapes drawing functions
-RLAPI void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color); // Draw a line in 3D world space
-RLAPI void DrawPoint3D(Vector3 position, Color color); // Draw a point in 3D space, actually a small line
-RLAPI void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color); // Draw a circle in 3D world space
-RLAPI void DrawTriangle3D(Vector3 v1, Vector3 v2, Vector3 v3, Color color); // Draw a color-filled triangle (vertex in counter-clockwise order!)
-RLAPI void DrawTriangleStrip3D(Vector3 *points, int pointCount, Color color); // Draw a triangle strip defined by points
-RLAPI void DrawCube(Vector3 position, float width, float height, float length, Color color); // Draw cube
-RLAPI void DrawCubeV(Vector3 position, Vector3 size, Color color); // Draw cube (Vector version)
-RLAPI void DrawCubeWires(Vector3 position, float width, float height, float length, Color color); // Draw cube wires
-RLAPI void DrawCubeWiresV(Vector3 position, Vector3 size, Color color); // Draw cube wires (Vector version)
-RLAPI void DrawSphere(Vector3 centerPos, float radius, Color color); // Draw sphere
-RLAPI void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color); // Draw sphere with extended parameters
-RLAPI void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color); // Draw sphere wires
-RLAPI void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int slices, Color color); // Draw a cylinder/cone
-RLAPI void DrawCylinderEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color); // Draw a cylinder with base at startPos and top at endPos
-RLAPI void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int slices, Color color); // Draw a cylinder/cone wires
-RLAPI void DrawCylinderWiresEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color); // Draw a cylinder wires with base at startPos and top at endPos
-RLAPI void DrawCapsule(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color); // Draw a capsule with the center of its sphere caps at startPos and endPos
-RLAPI void DrawCapsuleWires(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color); // Draw capsule wireframe with the center of its sphere caps at startPos and endPos
-RLAPI void DrawPlane(Vector3 centerPos, Vector2 size, Color color); // Draw a plane XZ
-RLAPI void DrawRay(Ray ray, Color color); // Draw a ray line
-RLAPI void DrawGrid(int slices, float spacing); // Draw a grid (centered at (0, 0, 0))
-
-//------------------------------------------------------------------------------------
-// Model 3d Loading and Drawing Functions (Module: models)
-//------------------------------------------------------------------------------------
-
-// Model management functions
-RLAPI Model LoadModel(const char *fileName); // Load model from files (meshes and materials)
-RLAPI Model LoadModelFromMesh(Mesh mesh); // Load model from generated mesh (default material)
-RLAPI bool IsModelReady(Model model); // Check if a model is ready
-RLAPI void UnloadModel(Model model); // Unload model (including meshes) from memory (RAM and/or VRAM)
-RLAPI BoundingBox GetModelBoundingBox(Model model); // Compute model bounding box limits (considers all meshes)
-
-// Model drawing functions
-RLAPI void DrawModel(Model model, Vector3 position, float scale, Color tint); // Draw a model (with texture if set)
-RLAPI void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint); // Draw a model with extended parameters
-RLAPI void DrawModelWires(Model model, Vector3 position, float scale, Color tint); // Draw a model wires (with texture if set)
-RLAPI void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint); // Draw a model wires (with texture if set) with extended parameters
-RLAPI void DrawBoundingBox(BoundingBox box, Color color); // Draw bounding box (wires)
-RLAPI void DrawBillboard(Camera camera, Texture2D texture, Vector3 position, float size, Color tint); // Draw a billboard texture
-RLAPI void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector2 size, Color tint); // Draw a billboard texture defined by source
-RLAPI void DrawBillboardPro(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector3 up, Vector2 size, Vector2 origin, float rotation, Color tint); // Draw a billboard texture defined by source and rotation
-
-// Mesh management functions
-RLAPI void UploadMesh(Mesh *mesh, bool dynamic); // Upload mesh vertex data in GPU and provide VAO/VBO ids
-RLAPI void UpdateMeshBuffer(Mesh mesh, int index, const void *data, int dataSize, int offset); // Update mesh vertex data in GPU for a specific buffer index
-RLAPI void UnloadMesh(Mesh mesh); // Unload mesh data from CPU and GPU
-RLAPI void DrawMesh(Mesh mesh, Material material, Matrix transform); // Draw a 3d mesh with material and transform
-RLAPI void DrawMeshInstanced(Mesh mesh, Material material, const Matrix *transforms, int instances); // Draw multiple mesh instances with material and different transforms
-RLAPI bool ExportMesh(Mesh mesh, const char *fileName); // Export mesh data to file, returns true on success
-RLAPI BoundingBox GetMeshBoundingBox(Mesh mesh); // Compute mesh bounding box limits
-RLAPI void GenMeshTangents(Mesh *mesh); // Compute mesh tangents
-
-// Mesh generation functions
-RLAPI Mesh GenMeshPoly(int sides, float radius); // Generate polygonal mesh
-RLAPI Mesh GenMeshPlane(float width, float length, int resX, int resZ); // Generate plane mesh (with subdivisions)
-RLAPI Mesh GenMeshCube(float width, float height, float length); // Generate cuboid mesh
-RLAPI Mesh GenMeshSphere(float radius, int rings, int slices); // Generate sphere mesh (standard sphere)
-RLAPI Mesh GenMeshHemiSphere(float radius, int rings, int slices); // Generate half-sphere mesh (no bottom cap)
-RLAPI Mesh GenMeshCylinder(float radius, float height, int slices); // Generate cylinder mesh
-RLAPI Mesh GenMeshCone(float radius, float height, int slices); // Generate cone/pyramid mesh
-RLAPI Mesh GenMeshTorus(float radius, float size, int radSeg, int sides); // Generate torus mesh
-RLAPI Mesh GenMeshKnot(float radius, float size, int radSeg, int sides); // Generate trefoil knot mesh
-RLAPI Mesh GenMeshHeightmap(Image heightmap, Vector3 size); // Generate heightmap mesh from image data
-RLAPI Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize); // Generate cubes-based map mesh from image data
-
-// Material loading/unloading functions
-RLAPI Material *LoadMaterials(const char *fileName, int *materialCount); // Load materials from model file
-RLAPI Material LoadMaterialDefault(void); // Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
-RLAPI bool IsMaterialReady(Material material); // Check if a material is ready
-RLAPI void UnloadMaterial(Material material); // Unload material from GPU memory (VRAM)
-RLAPI void SetMaterialTexture(Material *material, int mapType, Texture2D texture); // Set texture for a material map type (MATERIAL_MAP_DIFFUSE, MATERIAL_MAP_SPECULAR...)
-RLAPI void SetModelMeshMaterial(Model *model, int meshId, int materialId); // Set material for a mesh
-
-// Model animations loading/unloading functions
-RLAPI ModelAnimation *LoadModelAnimations(const char *fileName, int *animCount); // Load model animations from file
-RLAPI void UpdateModelAnimation(Model model, ModelAnimation anim, int frame); // Update model animation pose
-RLAPI void UnloadModelAnimation(ModelAnimation anim); // Unload animation data
-RLAPI void UnloadModelAnimations(ModelAnimation *animations, int animCount); // Unload animation array data
-RLAPI bool IsModelAnimationValid(Model model, ModelAnimation anim); // Check model animation skeleton match
-
-// Collision detection functions
-RLAPI bool CheckCollisionSpheres(Vector3 center1, float radius1, Vector3 center2, float radius2); // Check collision between two spheres
-RLAPI bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2); // Check collision between two bounding boxes
-RLAPI bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius); // Check collision between box and sphere
-RLAPI RayCollision GetRayCollisionSphere(Ray ray, Vector3 center, float radius); // Get collision info between ray and sphere
-RLAPI RayCollision GetRayCollisionBox(Ray ray, BoundingBox box); // Get collision info between ray and box
-RLAPI RayCollision GetRayCollisionMesh(Ray ray, Mesh mesh, Matrix transform); // Get collision info between ray and mesh
-RLAPI RayCollision GetRayCollisionTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3); // Get collision info between ray and triangle
-RLAPI RayCollision GetRayCollisionQuad(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 p4); // Get collision info between ray and quad
-
-//------------------------------------------------------------------------------------
-// Audio Loading and Playing Functions (Module: audio)
-//------------------------------------------------------------------------------------
-typedef void (*AudioCallback)(void *bufferData, unsigned int frames);
-
-// Audio device management functions
-RLAPI void InitAudioDevice(void); // Initialize audio device and context
-RLAPI void CloseAudioDevice(void); // Close the audio device and context
-RLAPI bool IsAudioDeviceReady(void); // Check if audio device has been initialized successfully
-RLAPI void SetMasterVolume(float volume); // Set master volume (listener)
-RLAPI float GetMasterVolume(void); // Get master volume (listener)
-
-// Wave/Sound loading/unloading functions
-RLAPI Wave LoadWave(const char *fileName); // Load wave data from file
-RLAPI Wave LoadWaveFromMemory(const char *fileType, const unsigned char *fileData, int dataSize); // Load wave from memory buffer, fileType refers to extension: i.e. '.wav'
-RLAPI bool IsWaveReady(Wave wave); // Checks if wave data is ready
-RLAPI Sound LoadSound(const char *fileName); // Load sound from file
-RLAPI Sound LoadSoundFromWave(Wave wave); // Load sound from wave data
-RLAPI Sound LoadSoundAlias(Sound source); // Create a new sound that shares the same sample data as the source sound, does not own the sound data
-RLAPI bool IsSoundReady(Sound sound); // Checks if a sound is ready
-RLAPI void UpdateSound(Sound sound, const void *data, int sampleCount); // Update sound buffer with new data
-RLAPI void UnloadWave(Wave wave); // Unload wave data
-RLAPI void UnloadSound(Sound sound); // Unload sound
-RLAPI void UnloadSoundAlias(Sound alias); // Unload a sound alias (does not deallocate sample data)
-RLAPI bool ExportWave(Wave wave, const char *fileName); // Export wave data to file, returns true on success
-RLAPI bool ExportWaveAsCode(Wave wave, const char *fileName); // Export wave sample data to code (.h), returns true on success
-
-// Wave/Sound management functions
-RLAPI void PlaySound(Sound sound); // Play a sound
-RLAPI void StopSound(Sound sound); // Stop playing a sound
-RLAPI void PauseSound(Sound sound); // Pause a sound
-RLAPI void ResumeSound(Sound sound); // Resume a paused sound
-RLAPI bool IsSoundPlaying(Sound sound); // Check if a sound is currently playing
-RLAPI void SetSoundVolume(Sound sound, float volume); // Set volume for a sound (1.0 is max level)
-RLAPI void SetSoundPitch(Sound sound, float pitch); // Set pitch for a sound (1.0 is base level)
-RLAPI void SetSoundPan(Sound sound, float pan); // Set pan for a sound (0.5 is center)
-RLAPI Wave WaveCopy(Wave wave); // Copy a wave to a new wave
-RLAPI void WaveCrop(Wave *wave, int initSample, int finalSample); // Crop a wave to defined samples range
-RLAPI void WaveFormat(Wave *wave, int sampleRate, int sampleSize, int channels); // Convert wave data to desired format
-RLAPI float *LoadWaveSamples(Wave wave); // Load samples data from wave as a 32bit float data array
-RLAPI void UnloadWaveSamples(float *samples); // Unload samples data loaded with LoadWaveSamples()
-
-// Music management functions
-RLAPI Music LoadMusicStream(const char *fileName); // Load music stream from file
-RLAPI Music LoadMusicStreamFromMemory(const char *fileType, const unsigned char *data, int dataSize); // Load music stream from data
-RLAPI bool IsMusicReady(Music music); // Checks if a music stream is ready
-RLAPI void UnloadMusicStream(Music music); // Unload music stream
-RLAPI void PlayMusicStream(Music music); // Start music playing
-RLAPI bool IsMusicStreamPlaying(Music music); // Check if music is playing
-RLAPI void UpdateMusicStream(Music music); // Updates buffers for music streaming
-RLAPI void StopMusicStream(Music music); // Stop music playing
-RLAPI void PauseMusicStream(Music music); // Pause music playing
-RLAPI void ResumeMusicStream(Music music); // Resume playing paused music
-RLAPI void SeekMusicStream(Music music, float position); // Seek music to a position (in seconds)
-RLAPI void SetMusicVolume(Music music, float volume); // Set volume for music (1.0 is max level)
-RLAPI void SetMusicPitch(Music music, float pitch); // Set pitch for a music (1.0 is base level)
-RLAPI void SetMusicPan(Music music, float pan); // Set pan for a music (0.5 is center)
-RLAPI float GetMusicTimeLength(Music music); // Get music time length (in seconds)
-RLAPI float GetMusicTimePlayed(Music music); // Get current music time played (in seconds)
-
-// AudioStream management functions
-RLAPI AudioStream LoadAudioStream(unsigned int sampleRate, unsigned int sampleSize, unsigned int channels); // Load audio stream (to stream raw audio pcm data)
-RLAPI bool IsAudioStreamReady(AudioStream stream); // Checks if an audio stream is ready
-RLAPI void UnloadAudioStream(AudioStream stream); // Unload audio stream and free memory
-RLAPI void UpdateAudioStream(AudioStream stream, const void *data, int frameCount); // Update audio stream buffers with data
-RLAPI bool IsAudioStreamProcessed(AudioStream stream); // Check if any audio stream buffers requires refill
-RLAPI void PlayAudioStream(AudioStream stream); // Play audio stream
-RLAPI void PauseAudioStream(AudioStream stream); // Pause audio stream
-RLAPI void ResumeAudioStream(AudioStream stream); // Resume audio stream
-RLAPI bool IsAudioStreamPlaying(AudioStream stream); // Check if audio stream is playing
-RLAPI void StopAudioStream(AudioStream stream); // Stop audio stream
-RLAPI void SetAudioStreamVolume(AudioStream stream, float volume); // Set volume for audio stream (1.0 is max level)
-RLAPI void SetAudioStreamPitch(AudioStream stream, float pitch); // Set pitch for audio stream (1.0 is base level)
-RLAPI void SetAudioStreamPan(AudioStream stream, float pan); // Set pan for audio stream (0.5 is centered)
-RLAPI void SetAudioStreamBufferSizeDefault(int size); // Default size for new audio streams
-RLAPI void SetAudioStreamCallback(AudioStream stream, AudioCallback callback); // Audio thread callback to request new data
-
-RLAPI void AttachAudioStreamProcessor(AudioStream stream, AudioCallback processor); // Attach audio stream processor to stream, receives the samples as <float>s
-RLAPI void DetachAudioStreamProcessor(AudioStream stream, AudioCallback processor); // Detach audio stream processor from stream
-
-RLAPI void AttachAudioMixedProcessor(AudioCallback processor); // Attach audio stream processor to the entire audio pipeline, receives the samples as <float>s
-RLAPI void DetachAudioMixedProcessor(AudioCallback processor); // Detach audio stream processor from the entire audio pipeline
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif // RAYLIB_H
+++ /dev/null
-/**********************************************************************************************
-*
-* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
-*
-* CONVENTIONS:
-* - Matrix structure is defined as row-major (memory layout) but parameters naming AND all
-* math operations performed by the library consider the structure as it was column-major
-* It is like transposed versions of the matrices are used for all the maths
-* It benefits some functions making them cache-friendly and also avoids matrix
-* transpositions sometimes required by OpenGL
-* Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3]
-* - Functions are always self-contained, no function use another raymath function inside,
-* required code is directly re-implemented inside
-* - Functions input parameters are always received by value (2 unavoidable exceptions)
-* - Functions use always a "result" variable for return
-* - Functions are always defined inline
-* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
-* - No compound literals used to make sure libray is compatible with C++
-*
-* CONFIGURATION:
-* #define RAYMATH_IMPLEMENTATION
-* Generates the implementation of the library into the included file.
-* If not defined, the library is in header only mode and can be included in other headers
-* or source files without problems. But only ONE file should hold the implementation.
-*
-* #define RAYMATH_STATIC_INLINE
-* Define static inline functions code, so #include header suffices for use.
-* This may use up lots of memory.
-*
-*
-* LICENSE: zlib/libpng
-*
-* Copyright (c) 2015-2023 Ramon Santamaria (@raysan5)
-*
-* This software is provided "as-is", without any express or implied warranty. In no event
-* will the authors be held liable for any damages arising from the use of this software.
-*
-* Permission is granted to anyone to use this software for any purpose, including commercial
-* applications, and to alter it and redistribute it freely, subject to the following restrictions:
-*
-* 1. The origin of this software must not be misrepresented; you must not claim that you
-* wrote the original software. If you use this software in a product, an acknowledgment
-* in the product documentation would be appreciated but is not required.
-*
-* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
-* as being the original software.
-*
-* 3. This notice may not be removed or altered from any source distribution.
-*
-**********************************************************************************************/
-
-#ifndef RAYMATH_H
-#define RAYMATH_H
-
-#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_STATIC_INLINE)
- #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_STATIC_INLINE is contradictory"
-#endif
-
-// Function specifiers definition
-#if defined(RAYMATH_IMPLEMENTATION)
- #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
- #define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll).
- #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
- #define RMAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll)
- #else
- #define RMAPI extern inline // Provide external definition
- #endif
-#elif defined(RAYMATH_STATIC_INLINE)
- #define RMAPI static inline // Functions may be inlined, no external out-of-line definition
-#else
- #if defined(__TINYC__)
- #define RMAPI static inline // plain inline not supported by tinycc (See issue #435)
- #else
- #define RMAPI inline // Functions may be inlined or external definition used
- #endif
-#endif
-
-//----------------------------------------------------------------------------------
-// Defines and Macros
-//----------------------------------------------------------------------------------
-#ifndef PI
- #define PI 3.14159265358979323846f
-#endif
-
-#ifndef EPSILON
- #define EPSILON 0.000001f
-#endif
-
-#ifndef DEG2RAD
- #define DEG2RAD (PI/180.0f)
-#endif
-
-#ifndef RAD2DEG
- #define RAD2DEG (180.0f/PI)
-#endif
-
-// Get float vector for Matrix
-#ifndef MatrixToFloat
- #define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
-#endif
-
-// Get float vector for Vector3
-#ifndef Vector3ToFloat
- #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
-#endif
-
-//----------------------------------------------------------------------------------
-// Types and Structures Definition
-//----------------------------------------------------------------------------------
-#if !defined(RL_VECTOR2_TYPE)
-// Vector2 type
-typedef struct Vector2 {
- float x;
- float y;
-} Vector2;
-#define RL_VECTOR2_TYPE
-#endif
-
-#if !defined(RL_VECTOR3_TYPE)
-// Vector3 type
-typedef struct Vector3 {
- float x;
- float y;
- float z;
-} Vector3;
-#define RL_VECTOR3_TYPE
-#endif
-
-#if !defined(RL_VECTOR4_TYPE)
-// Vector4 type
-typedef struct Vector4 {
- float x;
- float y;
- float z;
- float w;
-} Vector4;
-#define RL_VECTOR4_TYPE
-#endif
-
-#if !defined(RL_QUATERNION_TYPE)
-// Quaternion type
-typedef Vector4 Quaternion;
-#define RL_QUATERNION_TYPE
-#endif
-
-#if !defined(RL_MATRIX_TYPE)
-// Matrix type (OpenGL style 4x4 - right handed, column major)
-typedef struct Matrix {
- float m0, m4, m8, m12; // Matrix first row (4 components)
- float m1, m5, m9, m13; // Matrix second row (4 components)
- float m2, m6, m10, m14; // Matrix third row (4 components)
- float m3, m7, m11, m15; // Matrix fourth row (4 components)
-} Matrix;
-#define RL_MATRIX_TYPE
-#endif
-
-// NOTE: Helper types to be used instead of array return types for *ToFloat functions
-typedef struct float3 {
- float v[3];
-} float3;
-
-typedef struct float16 {
- float v[16];
-} float16;
-
-#include <math.h> // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabs()
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Utils math
-//----------------------------------------------------------------------------------
-
-// Clamp float value
-RMAPI float Clamp(float value, float min, float max)
-{
- float result = (value < min)? min : value;
-
- if (result > max) result = max;
-
- return result;
-}
-
-// Calculate linear interpolation between two floats
-RMAPI float Lerp(float start, float end, float amount)
-{
- float result = start + amount*(end - start);
-
- return result;
-}
-
-// Normalize input value within input range
-RMAPI float Normalize(float value, float start, float end)
-{
- float result = (value - start)/(end - start);
-
- return result;
-}
-
-// Remap input value within input range to output range
-RMAPI float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd)
-{
- float result = (value - inputStart)/(inputEnd - inputStart)*(outputEnd - outputStart) + outputStart;
-
- return result;
-}
-
-// Wrap input value from min to max
-RMAPI float Wrap(float value, float min, float max)
-{
- float result = value - (max - min)*floorf((value - min)/(max - min));
-
- return result;
-}
-
-// Check whether two given floats are almost equal
-RMAPI int FloatEquals(float x, float y)
-{
-#if !defined(EPSILON)
- #define EPSILON 0.000001f
-#endif
-
- int result = (fabsf(x - y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y))));
-
- return result;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Vector2 math
-//----------------------------------------------------------------------------------
-
-// Vector with components value 0.0f
-RMAPI Vector2 Vector2Zero(void)
-{
- Vector2 result = { 0.0f, 0.0f };
-
- return result;
-}
-
-// Vector with components value 1.0f
-RMAPI Vector2 Vector2One(void)
-{
- Vector2 result = { 1.0f, 1.0f };
-
- return result;
-}
-
-// Add two vectors (v1 + v2)
-RMAPI Vector2 Vector2Add(Vector2 v1, Vector2 v2)
-{
- Vector2 result = { v1.x + v2.x, v1.y + v2.y };
-
- return result;
-}
-
-// Add vector and float value
-RMAPI Vector2 Vector2AddValue(Vector2 v, float add)
-{
- Vector2 result = { v.x + add, v.y + add };
-
- return result;
-}
-
-// Subtract two vectors (v1 - v2)
-RMAPI Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
-{
- Vector2 result = { v1.x - v2.x, v1.y - v2.y };
-
- return result;
-}
-
-// Subtract vector by float value
-RMAPI Vector2 Vector2SubtractValue(Vector2 v, float sub)
-{
- Vector2 result = { v.x - sub, v.y - sub };
-
- return result;
-}
-
-// Calculate vector length
-RMAPI float Vector2Length(Vector2 v)
-{
- float result = sqrtf((v.x*v.x) + (v.y*v.y));
-
- return result;
-}
-
-// Calculate vector square length
-RMAPI float Vector2LengthSqr(Vector2 v)
-{
- float result = (v.x*v.x) + (v.y*v.y);
-
- return result;
-}
-
-// Calculate two vectors dot product
-RMAPI float Vector2DotProduct(Vector2 v1, Vector2 v2)
-{
- float result = (v1.x*v2.x + v1.y*v2.y);
-
- return result;
-}
-
-// Calculate distance between two vectors
-RMAPI float Vector2Distance(Vector2 v1, Vector2 v2)
-{
- float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
-
- return result;
-}
-
-// Calculate square distance between two vectors
-RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2)
-{
- float result = ((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
-
- return result;
-}
-
-// Calculate angle between two vectors
-// NOTE: Angle is calculated from origin point (0, 0)
-RMAPI float Vector2Angle(Vector2 v1, Vector2 v2)
-{
- float result = 0.0f;
-
- float dot = v1.x*v2.x + v1.y*v2.y;
- float det = v1.x*v2.y - v1.y*v2.x;
-
- result = atan2f(det, dot);
-
- return result;
-}
-
-// Calculate angle defined by a two vectors line
-// NOTE: Parameters need to be normalized
-// Current implementation should be aligned with glm::angle
-RMAPI float Vector2LineAngle(Vector2 start, Vector2 end)
-{
- float result = 0.0f;
-
- // TODO(10/9/2023): Currently angles move clockwise, determine if this is wanted behavior
- result = -atan2f(end.y - start.y, end.x - start.x);
-
- return result;
-}
-
-// Scale vector (multiply by value)
-RMAPI Vector2 Vector2Scale(Vector2 v, float scale)
-{
- Vector2 result = { v.x*scale, v.y*scale };
-
- return result;
-}
-
-// Multiply vector by vector
-RMAPI Vector2 Vector2Multiply(Vector2 v1, Vector2 v2)
-{
- Vector2 result = { v1.x*v2.x, v1.y*v2.y };
-
- return result;
-}
-
-// Negate vector
-RMAPI Vector2 Vector2Negate(Vector2 v)
-{
- Vector2 result = { -v.x, -v.y };
-
- return result;
-}
-
-// Divide vector by vector
-RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2)
-{
- Vector2 result = { v1.x/v2.x, v1.y/v2.y };
-
- return result;
-}
-
-// Normalize provided vector
-RMAPI Vector2 Vector2Normalize(Vector2 v)
-{
- Vector2 result = { 0 };
- float length = sqrtf((v.x*v.x) + (v.y*v.y));
-
- if (length > 0)
- {
- float ilength = 1.0f/length;
- result.x = v.x*ilength;
- result.y = v.y*ilength;
- }
-
- return result;
-}
-
-// Transforms a Vector2 by a given Matrix
-RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat)
-{
- Vector2 result = { 0 };
-
- float x = v.x;
- float y = v.y;
- float z = 0;
-
- result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
- result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
-
- return result;
-}
-
-// Calculate linear interpolation between two vectors
-RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
-{
- Vector2 result = { 0 };
-
- result.x = v1.x + amount*(v2.x - v1.x);
- result.y = v1.y + amount*(v2.y - v1.y);
-
- return result;
-}
-
-// Calculate reflected vector to normal
-RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal)
-{
- Vector2 result = { 0 };
-
- float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product
-
- result.x = v.x - (2.0f*normal.x)*dotProduct;
- result.y = v.y - (2.0f*normal.y)*dotProduct;
-
- return result;
-}
-
-// Rotate vector by angle
-RMAPI Vector2 Vector2Rotate(Vector2 v, float angle)
-{
- Vector2 result = { 0 };
-
- float cosres = cosf(angle);
- float sinres = sinf(angle);
-
- result.x = v.x*cosres - v.y*sinres;
- result.y = v.x*sinres + v.y*cosres;
-
- return result;
-}
-
-// Move Vector towards target
-RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance)
-{
- Vector2 result = { 0 };
-
- float dx = target.x - v.x;
- float dy = target.y - v.y;
- float value = (dx*dx) + (dy*dy);
-
- if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
-
- float dist = sqrtf(value);
-
- result.x = v.x + dx/dist*maxDistance;
- result.y = v.y + dy/dist*maxDistance;
-
- return result;
-}
-
-// Invert the given vector
-RMAPI Vector2 Vector2Invert(Vector2 v)
-{
- Vector2 result = { 1.0f/v.x, 1.0f/v.y };
-
- return result;
-}
-
-// Clamp the components of the vector between
-// min and max values specified by the given vectors
-RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max)
-{
- Vector2 result = { 0 };
-
- result.x = fminf(max.x, fmaxf(min.x, v.x));
- result.y = fminf(max.y, fmaxf(min.y, v.y));
-
- return result;
-}
-
-// Clamp the magnitude of the vector between two min and max values
-RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max)
-{
- Vector2 result = v;
-
- float length = (v.x*v.x) + (v.y*v.y);
- if (length > 0.0f)
- {
- length = sqrtf(length);
-
- if (length < min)
- {
- float scale = min/length;
- result.x = v.x*scale;
- result.y = v.y*scale;
- }
- else if (length > max)
- {
- float scale = max/length;
- result.x = v.x*scale;
- result.y = v.y*scale;
- }
- }
-
- return result;
-}
-
-// Check whether two given vectors are almost equal
-RMAPI int Vector2Equals(Vector2 p, Vector2 q)
-{
-#if !defined(EPSILON)
- #define EPSILON 0.000001f
-#endif
-
- int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
- ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y)))));
-
- return result;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Vector3 math
-//----------------------------------------------------------------------------------
-
-// Vector with components value 0.0f
-RMAPI Vector3 Vector3Zero(void)
-{
- Vector3 result = { 0.0f, 0.0f, 0.0f };
-
- return result;
-}
-
-// Vector with components value 1.0f
-RMAPI Vector3 Vector3One(void)
-{
- Vector3 result = { 1.0f, 1.0f, 1.0f };
-
- return result;
-}
-
-// Add two vectors
-RMAPI Vector3 Vector3Add(Vector3 v1, Vector3 v2)
-{
- Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
-
- return result;
-}
-
-// Add vector and float value
-RMAPI Vector3 Vector3AddValue(Vector3 v, float add)
-{
- Vector3 result = { v.x + add, v.y + add, v.z + add };
-
- return result;
-}
-
-// Subtract two vectors
-RMAPI Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
-{
- Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
-
- return result;
-}
-
-// Subtract vector by float value
-RMAPI Vector3 Vector3SubtractValue(Vector3 v, float sub)
-{
- Vector3 result = { v.x - sub, v.y - sub, v.z - sub };
-
- return result;
-}
-
-// Multiply vector by scalar
-RMAPI Vector3 Vector3Scale(Vector3 v, float scalar)
-{
- Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
-
- return result;
-}
-
-// Multiply vector by vector
-RMAPI Vector3 Vector3Multiply(Vector3 v1, Vector3 v2)
-{
- Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
-
- return result;
-}
-
-// Calculate two vectors cross product
-RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
-{
- Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
-
- return result;
-}
-
-// Calculate one vector perpendicular vector
-RMAPI Vector3 Vector3Perpendicular(Vector3 v)
-{
- Vector3 result = { 0 };
-
- float min = (float) fabs(v.x);
- Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
-
- if (fabsf(v.y) < min)
- {
- min = (float) fabs(v.y);
- Vector3 tmp = {0.0f, 1.0f, 0.0f};
- cardinalAxis = tmp;
- }
-
- if (fabsf(v.z) < min)
- {
- Vector3 tmp = {0.0f, 0.0f, 1.0f};
- cardinalAxis = tmp;
- }
-
- // Cross product between vectors
- result.x = v.y*cardinalAxis.z - v.z*cardinalAxis.y;
- result.y = v.z*cardinalAxis.x - v.x*cardinalAxis.z;
- result.z = v.x*cardinalAxis.y - v.y*cardinalAxis.x;
-
- return result;
-}
-
-// Calculate vector length
-RMAPI float Vector3Length(const Vector3 v)
-{
- float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
-
- return result;
-}
-
-// Calculate vector square length
-RMAPI float Vector3LengthSqr(const Vector3 v)
-{
- float result = v.x*v.x + v.y*v.y + v.z*v.z;
-
- return result;
-}
-
-// Calculate two vectors dot product
-RMAPI float Vector3DotProduct(Vector3 v1, Vector3 v2)
-{
- float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
-
- return result;
-}
-
-// Calculate distance between two vectors
-RMAPI float Vector3Distance(Vector3 v1, Vector3 v2)
-{
- float result = 0.0f;
-
- float dx = v2.x - v1.x;
- float dy = v2.y - v1.y;
- float dz = v2.z - v1.z;
- result = sqrtf(dx*dx + dy*dy + dz*dz);
-
- return result;
-}
-
-// Calculate square distance between two vectors
-RMAPI float Vector3DistanceSqr(Vector3 v1, Vector3 v2)
-{
- float result = 0.0f;
-
- float dx = v2.x - v1.x;
- float dy = v2.y - v1.y;
- float dz = v2.z - v1.z;
- result = dx*dx + dy*dy + dz*dz;
-
- return result;
-}
-
-// Calculate angle between two vectors
-RMAPI float Vector3Angle(Vector3 v1, Vector3 v2)
-{
- float result = 0.0f;
-
- Vector3 cross = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
- float len = sqrtf(cross.x*cross.x + cross.y*cross.y + cross.z*cross.z);
- float dot = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
- result = atan2f(len, dot);
-
- return result;
-}
-
-// Negate provided vector (invert direction)
-RMAPI Vector3 Vector3Negate(Vector3 v)
-{
- Vector3 result = { -v.x, -v.y, -v.z };
-
- return result;
-}
-
-// Divide vector by vector
-RMAPI Vector3 Vector3Divide(Vector3 v1, Vector3 v2)
-{
- Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
-
- return result;
-}
-
-// Normalize provided vector
-RMAPI Vector3 Vector3Normalize(Vector3 v)
-{
- Vector3 result = v;
-
- float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length != 0.0f)
- {
- float ilength = 1.0f/length;
-
- result.x *= ilength;
- result.y *= ilength;
- result.z *= ilength;
- }
-
- return result;
-}
-
-//Calculate the projection of the vector v1 on to v2
-RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2)
-{
- Vector3 result = { 0 };
-
- float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
- float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
-
- float mag = v1dv2/v2dv2;
-
- result.x = v2.x*mag;
- result.y = v2.y*mag;
- result.z = v2.z*mag;
-
- return result;
-}
-
-//Calculate the rejection of the vector v1 on to v2
-RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2)
-{
- Vector3 result = { 0 };
-
- float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
- float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
-
- float mag = v1dv2/v2dv2;
-
- result.x = v1.x - (v2.x*mag);
- result.y = v1.y - (v2.y*mag);
- result.z = v1.z - (v2.z*mag);
-
- return result;
-}
-
-// Orthonormalize provided vectors
-// Makes vectors normalized and orthogonal to each other
-// Gram-Schmidt function implementation
-RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
-{
- float length = 0.0f;
- float ilength = 0.0f;
-
- // Vector3Normalize(*v1);
- Vector3 v = *v1;
- length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- v1->x *= ilength;
- v1->y *= ilength;
- v1->z *= ilength;
-
- // Vector3CrossProduct(*v1, *v2)
- Vector3 vn1 = { v1->y*v2->z - v1->z*v2->y, v1->z*v2->x - v1->x*v2->z, v1->x*v2->y - v1->y*v2->x };
-
- // Vector3Normalize(vn1);
- v = vn1;
- length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- vn1.x *= ilength;
- vn1.y *= ilength;
- vn1.z *= ilength;
-
- // Vector3CrossProduct(vn1, *v1)
- Vector3 vn2 = { vn1.y*v1->z - vn1.z*v1->y, vn1.z*v1->x - vn1.x*v1->z, vn1.x*v1->y - vn1.y*v1->x };
-
- *v2 = vn2;
-}
-
-// Transforms a Vector3 by a given Matrix
-RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat)
-{
- Vector3 result = { 0 };
-
- float x = v.x;
- float y = v.y;
- float z = v.z;
-
- result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
- result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
- result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
-
- return result;
-}
-
-// Transform a vector by quaternion rotation
-RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
-{
- Vector3 result = { 0 };
-
- result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
- result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
- result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
-
- return result;
-}
-
-// Rotates a vector around an axis
-RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle)
-{
- // Using Euler-Rodrigues Formula
- // Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula
-
- Vector3 result = v;
-
- // Vector3Normalize(axis);
- float length = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
- if (length == 0.0f) length = 1.0f;
- float ilength = 1.0f / length;
- axis.x *= ilength;
- axis.y *= ilength;
- axis.z *= ilength;
-
- angle /= 2.0f;
- float a = sinf(angle);
- float b = axis.x*a;
- float c = axis.y*a;
- float d = axis.z*a;
- a = cosf(angle);
- Vector3 w = { b, c, d };
-
- // Vector3CrossProduct(w, v)
- Vector3 wv = { w.y*v.z - w.z*v.y, w.z*v.x - w.x*v.z, w.x*v.y - w.y*v.x };
-
- // Vector3CrossProduct(w, wv)
- Vector3 wwv = { w.y*wv.z - w.z*wv.y, w.z*wv.x - w.x*wv.z, w.x*wv.y - w.y*wv.x };
-
- // Vector3Scale(wv, 2*a)
- a *= 2;
- wv.x *= a;
- wv.y *= a;
- wv.z *= a;
-
- // Vector3Scale(wwv, 2)
- wwv.x *= 2;
- wwv.y *= 2;
- wwv.z *= 2;
-
- result.x += wv.x;
- result.y += wv.y;
- result.z += wv.z;
-
- result.x += wwv.x;
- result.y += wwv.y;
- result.z += wwv.z;
-
- return result;
-}
-
-// Calculate linear interpolation between two vectors
-RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
-{
- Vector3 result = { 0 };
-
- result.x = v1.x + amount*(v2.x - v1.x);
- result.y = v1.y + amount*(v2.y - v1.y);
- result.z = v1.z + amount*(v2.z - v1.z);
-
- return result;
-}
-
-// Calculate reflected vector to normal
-RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
-{
- Vector3 result = { 0 };
-
- // I is the original vector
- // N is the normal of the incident plane
- // R = I - (2*N*(DotProduct[I, N]))
-
- float dotProduct = (v.x*normal.x + v.y*normal.y + v.z*normal.z);
-
- result.x = v.x - (2.0f*normal.x)*dotProduct;
- result.y = v.y - (2.0f*normal.y)*dotProduct;
- result.z = v.z - (2.0f*normal.z)*dotProduct;
-
- return result;
-}
-
-// Get min value for each pair of components
-RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2)
-{
- Vector3 result = { 0 };
-
- result.x = fminf(v1.x, v2.x);
- result.y = fminf(v1.y, v2.y);
- result.z = fminf(v1.z, v2.z);
-
- return result;
-}
-
-// Get max value for each pair of components
-RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2)
-{
- Vector3 result = { 0 };
-
- result.x = fmaxf(v1.x, v2.x);
- result.y = fmaxf(v1.y, v2.y);
- result.z = fmaxf(v1.z, v2.z);
-
- return result;
-}
-
-// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
-// NOTE: Assumes P is on the plane of the triangle
-RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
-{
- Vector3 result = { 0 };
-
- Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z }; // Vector3Subtract(b, a)
- Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z }; // Vector3Subtract(c, a)
- Vector3 v2 = { p.x - a.x, p.y - a.y, p.z - a.z }; // Vector3Subtract(p, a)
- float d00 = (v0.x*v0.x + v0.y*v0.y + v0.z*v0.z); // Vector3DotProduct(v0, v0)
- float d01 = (v0.x*v1.x + v0.y*v1.y + v0.z*v1.z); // Vector3DotProduct(v0, v1)
- float d11 = (v1.x*v1.x + v1.y*v1.y + v1.z*v1.z); // Vector3DotProduct(v1, v1)
- float d20 = (v2.x*v0.x + v2.y*v0.y + v2.z*v0.z); // Vector3DotProduct(v2, v0)
- float d21 = (v2.x*v1.x + v2.y*v1.y + v2.z*v1.z); // Vector3DotProduct(v2, v1)
-
- float denom = d00*d11 - d01*d01;
-
- result.y = (d11*d20 - d01*d21)/denom;
- result.z = (d00*d21 - d01*d20)/denom;
- result.x = 1.0f - (result.z + result.y);
-
- return result;
-}
-
-// Projects a Vector3 from screen space into object space
-// NOTE: We are avoiding calling other raymath functions despite available
-RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view)
-{
- Vector3 result = { 0 };
-
- // Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it
- Matrix matViewProj = { // MatrixMultiply(view, projection);
- view.m0*projection.m0 + view.m1*projection.m4 + view.m2*projection.m8 + view.m3*projection.m12,
- view.m0*projection.m1 + view.m1*projection.m5 + view.m2*projection.m9 + view.m3*projection.m13,
- view.m0*projection.m2 + view.m1*projection.m6 + view.m2*projection.m10 + view.m3*projection.m14,
- view.m0*projection.m3 + view.m1*projection.m7 + view.m2*projection.m11 + view.m3*projection.m15,
- view.m4*projection.m0 + view.m5*projection.m4 + view.m6*projection.m8 + view.m7*projection.m12,
- view.m4*projection.m1 + view.m5*projection.m5 + view.m6*projection.m9 + view.m7*projection.m13,
- view.m4*projection.m2 + view.m5*projection.m6 + view.m6*projection.m10 + view.m7*projection.m14,
- view.m4*projection.m3 + view.m5*projection.m7 + view.m6*projection.m11 + view.m7*projection.m15,
- view.m8*projection.m0 + view.m9*projection.m4 + view.m10*projection.m8 + view.m11*projection.m12,
- view.m8*projection.m1 + view.m9*projection.m5 + view.m10*projection.m9 + view.m11*projection.m13,
- view.m8*projection.m2 + view.m9*projection.m6 + view.m10*projection.m10 + view.m11*projection.m14,
- view.m8*projection.m3 + view.m9*projection.m7 + view.m10*projection.m11 + view.m11*projection.m15,
- view.m12*projection.m0 + view.m13*projection.m4 + view.m14*projection.m8 + view.m15*projection.m12,
- view.m12*projection.m1 + view.m13*projection.m5 + view.m14*projection.m9 + view.m15*projection.m13,
- view.m12*projection.m2 + view.m13*projection.m6 + view.m14*projection.m10 + view.m15*projection.m14,
- view.m12*projection.m3 + view.m13*projection.m7 + view.m14*projection.m11 + view.m15*projection.m15 };
-
- // Calculate inverted matrix -> MatrixInvert(matViewProj);
- // Cache the matrix values (speed optimization)
- float a00 = matViewProj.m0, a01 = matViewProj.m1, a02 = matViewProj.m2, a03 = matViewProj.m3;
- float a10 = matViewProj.m4, a11 = matViewProj.m5, a12 = matViewProj.m6, a13 = matViewProj.m7;
- float a20 = matViewProj.m8, a21 = matViewProj.m9, a22 = matViewProj.m10, a23 = matViewProj.m11;
- float a30 = matViewProj.m12, a31 = matViewProj.m13, a32 = matViewProj.m14, a33 = matViewProj.m15;
-
- float b00 = a00*a11 - a01*a10;
- float b01 = a00*a12 - a02*a10;
- float b02 = a00*a13 - a03*a10;
- float b03 = a01*a12 - a02*a11;
- float b04 = a01*a13 - a03*a11;
- float b05 = a02*a13 - a03*a12;
- float b06 = a20*a31 - a21*a30;
- float b07 = a20*a32 - a22*a30;
- float b08 = a20*a33 - a23*a30;
- float b09 = a21*a32 - a22*a31;
- float b10 = a21*a33 - a23*a31;
- float b11 = a22*a33 - a23*a32;
-
- // Calculate the invert determinant (inlined to avoid double-caching)
- float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
-
- Matrix matViewProjInv = {
- (a11*b11 - a12*b10 + a13*b09)*invDet,
- (-a01*b11 + a02*b10 - a03*b09)*invDet,
- (a31*b05 - a32*b04 + a33*b03)*invDet,
- (-a21*b05 + a22*b04 - a23*b03)*invDet,
- (-a10*b11 + a12*b08 - a13*b07)*invDet,
- (a00*b11 - a02*b08 + a03*b07)*invDet,
- (-a30*b05 + a32*b02 - a33*b01)*invDet,
- (a20*b05 - a22*b02 + a23*b01)*invDet,
- (a10*b10 - a11*b08 + a13*b06)*invDet,
- (-a00*b10 + a01*b08 - a03*b06)*invDet,
- (a30*b04 - a31*b02 + a33*b00)*invDet,
- (-a20*b04 + a21*b02 - a23*b00)*invDet,
- (-a10*b09 + a11*b07 - a12*b06)*invDet,
- (a00*b09 - a01*b07 + a02*b06)*invDet,
- (-a30*b03 + a31*b01 - a32*b00)*invDet,
- (a20*b03 - a21*b01 + a22*b00)*invDet };
-
- // Create quaternion from source point
- Quaternion quat = { source.x, source.y, source.z, 1.0f };
-
- // Multiply quat point by unprojecte matrix
- Quaternion qtransformed = { // QuaternionTransform(quat, matViewProjInv)
- matViewProjInv.m0*quat.x + matViewProjInv.m4*quat.y + matViewProjInv.m8*quat.z + matViewProjInv.m12*quat.w,
- matViewProjInv.m1*quat.x + matViewProjInv.m5*quat.y + matViewProjInv.m9*quat.z + matViewProjInv.m13*quat.w,
- matViewProjInv.m2*quat.x + matViewProjInv.m6*quat.y + matViewProjInv.m10*quat.z + matViewProjInv.m14*quat.w,
- matViewProjInv.m3*quat.x + matViewProjInv.m7*quat.y + matViewProjInv.m11*quat.z + matViewProjInv.m15*quat.w };
-
- // Normalized world points in vectors
- result.x = qtransformed.x/qtransformed.w;
- result.y = qtransformed.y/qtransformed.w;
- result.z = qtransformed.z/qtransformed.w;
-
- return result;
-}
-
-// Get Vector3 as float array
-RMAPI float3 Vector3ToFloatV(Vector3 v)
-{
- float3 buffer = { 0 };
-
- buffer.v[0] = v.x;
- buffer.v[1] = v.y;
- buffer.v[2] = v.z;
-
- return buffer;
-}
-
-// Invert the given vector
-RMAPI Vector3 Vector3Invert(Vector3 v)
-{
- Vector3 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z };
-
- return result;
-}
-
-// Clamp the components of the vector between
-// min and max values specified by the given vectors
-RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max)
-{
- Vector3 result = { 0 };
-
- result.x = fminf(max.x, fmaxf(min.x, v.x));
- result.y = fminf(max.y, fmaxf(min.y, v.y));
- result.z = fminf(max.z, fmaxf(min.z, v.z));
-
- return result;
-}
-
-// Clamp the magnitude of the vector between two values
-RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max)
-{
- Vector3 result = v;
-
- float length = (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
- if (length > 0.0f)
- {
- length = sqrtf(length);
-
- if (length < min)
- {
- float scale = min/length;
- result.x = v.x*scale;
- result.y = v.y*scale;
- result.z = v.z*scale;
- }
- else if (length > max)
- {
- float scale = max/length;
- result.x = v.x*scale;
- result.y = v.y*scale;
- result.z = v.z*scale;
- }
- }
-
- return result;
-}
-
-// Check whether two given vectors are almost equal
-RMAPI int Vector3Equals(Vector3 p, Vector3 q)
-{
-#if !defined(EPSILON)
- #define EPSILON 0.000001f
-#endif
-
- int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
- ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
- ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z)))));
-
- return result;
-}
-
-// Compute the direction of a refracted ray
-// v: normalized direction of the incoming ray
-// n: normalized normal vector of the interface of two optical media
-// r: ratio of the refractive index of the medium from where the ray comes
-// to the refractive index of the medium on the other side of the surface
-RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r)
-{
- Vector3 result = { 0 };
-
- float dot = v.x*n.x + v.y*n.y + v.z*n.z;
- float d = 1.0f - r*r*(1.0f - dot*dot);
-
- if (d >= 0.0f)
- {
- d = sqrtf(d);
- v.x = r*v.x - (r*dot + d)*n.x;
- v.y = r*v.y - (r*dot + d)*n.y;
- v.z = r*v.z - (r*dot + d)*n.z;
-
- result = v;
- }
-
- return result;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Matrix math
-//----------------------------------------------------------------------------------
-
-// Compute matrix determinant
-RMAPI float MatrixDeterminant(Matrix mat)
-{
- float result = 0.0f;
-
- // Cache the matrix values (speed optimization)
- float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
- float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
- float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
- float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
-
- result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
- a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
- a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
- a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
- a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
- a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
-
- return result;
-}
-
-// Get the trace of the matrix (sum of the values along the diagonal)
-RMAPI float MatrixTrace(Matrix mat)
-{
- float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
-
- return result;
-}
-
-// Transposes provided matrix
-RMAPI Matrix MatrixTranspose(Matrix mat)
-{
- Matrix result = { 0 };
-
- result.m0 = mat.m0;
- result.m1 = mat.m4;
- result.m2 = mat.m8;
- result.m3 = mat.m12;
- result.m4 = mat.m1;
- result.m5 = mat.m5;
- result.m6 = mat.m9;
- result.m7 = mat.m13;
- result.m8 = mat.m2;
- result.m9 = mat.m6;
- result.m10 = mat.m10;
- result.m11 = mat.m14;
- result.m12 = mat.m3;
- result.m13 = mat.m7;
- result.m14 = mat.m11;
- result.m15 = mat.m15;
-
- return result;
-}
-
-// Invert provided matrix
-RMAPI Matrix MatrixInvert(Matrix mat)
-{
- Matrix result = { 0 };
-
- // Cache the matrix values (speed optimization)
- float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
- float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
- float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
- float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
-
- float b00 = a00*a11 - a01*a10;
- float b01 = a00*a12 - a02*a10;
- float b02 = a00*a13 - a03*a10;
- float b03 = a01*a12 - a02*a11;
- float b04 = a01*a13 - a03*a11;
- float b05 = a02*a13 - a03*a12;
- float b06 = a20*a31 - a21*a30;
- float b07 = a20*a32 - a22*a30;
- float b08 = a20*a33 - a23*a30;
- float b09 = a21*a32 - a22*a31;
- float b10 = a21*a33 - a23*a31;
- float b11 = a22*a33 - a23*a32;
-
- // Calculate the invert determinant (inlined to avoid double-caching)
- float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
-
- result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
- result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
- result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
- result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
- result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
- result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
- result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
- result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
- result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
- result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
- result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
- result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
- result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
- result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
- result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
- result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
-
- return result;
-}
-
-// Get identity matrix
-RMAPI Matrix MatrixIdentity(void)
-{
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f };
-
- return result;
-}
-
-// Add two matrices
-RMAPI Matrix MatrixAdd(Matrix left, Matrix right)
-{
- Matrix result = { 0 };
-
- result.m0 = left.m0 + right.m0;
- result.m1 = left.m1 + right.m1;
- result.m2 = left.m2 + right.m2;
- result.m3 = left.m3 + right.m3;
- result.m4 = left.m4 + right.m4;
- result.m5 = left.m5 + right.m5;
- result.m6 = left.m6 + right.m6;
- result.m7 = left.m7 + right.m7;
- result.m8 = left.m8 + right.m8;
- result.m9 = left.m9 + right.m9;
- result.m10 = left.m10 + right.m10;
- result.m11 = left.m11 + right.m11;
- result.m12 = left.m12 + right.m12;
- result.m13 = left.m13 + right.m13;
- result.m14 = left.m14 + right.m14;
- result.m15 = left.m15 + right.m15;
-
- return result;
-}
-
-// Subtract two matrices (left - right)
-RMAPI Matrix MatrixSubtract(Matrix left, Matrix right)
-{
- Matrix result = { 0 };
-
- result.m0 = left.m0 - right.m0;
- result.m1 = left.m1 - right.m1;
- result.m2 = left.m2 - right.m2;
- result.m3 = left.m3 - right.m3;
- result.m4 = left.m4 - right.m4;
- result.m5 = left.m5 - right.m5;
- result.m6 = left.m6 - right.m6;
- result.m7 = left.m7 - right.m7;
- result.m8 = left.m8 - right.m8;
- result.m9 = left.m9 - right.m9;
- result.m10 = left.m10 - right.m10;
- result.m11 = left.m11 - right.m11;
- result.m12 = left.m12 - right.m12;
- result.m13 = left.m13 - right.m13;
- result.m14 = left.m14 - right.m14;
- result.m15 = left.m15 - right.m15;
-
- return result;
-}
-
-// Get two matrix multiplication
-// NOTE: When multiplying matrices... the order matters!
-RMAPI Matrix MatrixMultiply(Matrix left, Matrix right)
-{
- Matrix result = { 0 };
-
- result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
- result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
- result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
- result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
- result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
- result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
- result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
- result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
- result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
- result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
- result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
- result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
- result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
- result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
- result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
- result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
-
- return result;
-}
-
-// Get translation matrix
-RMAPI Matrix MatrixTranslate(float x, float y, float z)
-{
- Matrix result = { 1.0f, 0.0f, 0.0f, x,
- 0.0f, 1.0f, 0.0f, y,
- 0.0f, 0.0f, 1.0f, z,
- 0.0f, 0.0f, 0.0f, 1.0f };
-
- return result;
-}
-
-// Create rotation matrix from axis and angle
-// NOTE: Angle should be provided in radians
-RMAPI Matrix MatrixRotate(Vector3 axis, float angle)
-{
- Matrix result = { 0 };
-
- float x = axis.x, y = axis.y, z = axis.z;
-
- float lengthSquared = x*x + y*y + z*z;
-
- if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f))
- {
- float ilength = 1.0f/sqrtf(lengthSquared);
- x *= ilength;
- y *= ilength;
- z *= ilength;
- }
-
- float sinres = sinf(angle);
- float cosres = cosf(angle);
- float t = 1.0f - cosres;
-
- result.m0 = x*x*t + cosres;
- result.m1 = y*x*t + z*sinres;
- result.m2 = z*x*t - y*sinres;
- result.m3 = 0.0f;
-
- result.m4 = x*y*t - z*sinres;
- result.m5 = y*y*t + cosres;
- result.m6 = z*y*t + x*sinres;
- result.m7 = 0.0f;
-
- result.m8 = x*z*t + y*sinres;
- result.m9 = y*z*t - x*sinres;
- result.m10 = z*z*t + cosres;
- result.m11 = 0.0f;
-
- result.m12 = 0.0f;
- result.m13 = 0.0f;
- result.m14 = 0.0f;
- result.m15 = 1.0f;
-
- return result;
-}
-
-// Get x-rotation matrix
-// NOTE: Angle must be provided in radians
-RMAPI Matrix MatrixRotateX(float angle)
-{
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
-
- float cosres = cosf(angle);
- float sinres = sinf(angle);
-
- result.m5 = cosres;
- result.m6 = sinres;
- result.m9 = -sinres;
- result.m10 = cosres;
-
- return result;
-}
-
-// Get y-rotation matrix
-// NOTE: Angle must be provided in radians
-RMAPI Matrix MatrixRotateY(float angle)
-{
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
-
- float cosres = cosf(angle);
- float sinres = sinf(angle);
-
- result.m0 = cosres;
- result.m2 = -sinres;
- result.m8 = sinres;
- result.m10 = cosres;
-
- return result;
-}
-
-// Get z-rotation matrix
-// NOTE: Angle must be provided in radians
-RMAPI Matrix MatrixRotateZ(float angle)
-{
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
-
- float cosres = cosf(angle);
- float sinres = sinf(angle);
-
- result.m0 = cosres;
- result.m1 = sinres;
- result.m4 = -sinres;
- result.m5 = cosres;
-
- return result;
-}
-
-
-// Get xyz-rotation matrix
-// NOTE: Angle must be provided in radians
-RMAPI Matrix MatrixRotateXYZ(Vector3 angle)
-{
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
-
- float cosz = cosf(-angle.z);
- float sinz = sinf(-angle.z);
- float cosy = cosf(-angle.y);
- float siny = sinf(-angle.y);
- float cosx = cosf(-angle.x);
- float sinx = sinf(-angle.x);
-
- result.m0 = cosz*cosy;
- result.m1 = (cosz*siny*sinx) - (sinz*cosx);
- result.m2 = (cosz*siny*cosx) + (sinz*sinx);
-
- result.m4 = sinz*cosy;
- result.m5 = (sinz*siny*sinx) + (cosz*cosx);
- result.m6 = (sinz*siny*cosx) - (cosz*sinx);
-
- result.m8 = -siny;
- result.m9 = cosy*sinx;
- result.m10= cosy*cosx;
-
- return result;
-}
-
-// Get zyx-rotation matrix
-// NOTE: Angle must be provided in radians
-RMAPI Matrix MatrixRotateZYX(Vector3 angle)
-{
- Matrix result = { 0 };
-
- float cz = cosf(angle.z);
- float sz = sinf(angle.z);
- float cy = cosf(angle.y);
- float sy = sinf(angle.y);
- float cx = cosf(angle.x);
- float sx = sinf(angle.x);
-
- result.m0 = cz*cy;
- result.m4 = cz*sy*sx - cx*sz;
- result.m8 = sz*sx + cz*cx*sy;
- result.m12 = 0;
-
- result.m1 = cy*sz;
- result.m5 = cz*cx + sz*sy*sx;
- result.m9 = cx*sz*sy - cz*sx;
- result.m13 = 0;
-
- result.m2 = -sy;
- result.m6 = cy*sx;
- result.m10 = cy*cx;
- result.m14 = 0;
-
- result.m3 = 0;
- result.m7 = 0;
- result.m11 = 0;
- result.m15 = 1;
-
- return result;
-}
-
-// Get scaling matrix
-RMAPI Matrix MatrixScale(float x, float y, float z)
-{
- Matrix result = { x, 0.0f, 0.0f, 0.0f,
- 0.0f, y, 0.0f, 0.0f,
- 0.0f, 0.0f, z, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f };
-
- return result;
-}
-
-// Get perspective projection matrix
-RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
-{
- Matrix result = { 0 };
-
- float rl = (float)(right - left);
- float tb = (float)(top - bottom);
- float fn = (float)(far - near);
-
- result.m0 = ((float)near*2.0f)/rl;
- result.m1 = 0.0f;
- result.m2 = 0.0f;
- result.m3 = 0.0f;
-
- result.m4 = 0.0f;
- result.m5 = ((float)near*2.0f)/tb;
- result.m6 = 0.0f;
- result.m7 = 0.0f;
-
- result.m8 = ((float)right + (float)left)/rl;
- result.m9 = ((float)top + (float)bottom)/tb;
- result.m10 = -((float)far + (float)near)/fn;
- result.m11 = -1.0f;
-
- result.m12 = 0.0f;
- result.m13 = 0.0f;
- result.m14 = -((float)far*(float)near*2.0f)/fn;
- result.m15 = 0.0f;
-
- return result;
-}
-
-// Get perspective projection matrix
-// NOTE: Fovy angle must be provided in radians
-RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane)
-{
- Matrix result = { 0 };
-
- double top = nearPlane*tan(fovY*0.5);
- double bottom = -top;
- double right = top*aspect;
- double left = -right;
-
- // MatrixFrustum(-right, right, -top, top, near, far);
- float rl = (float)(right - left);
- float tb = (float)(top - bottom);
- float fn = (float)(farPlane - nearPlane);
-
- result.m0 = ((float)nearPlane*2.0f)/rl;
- result.m5 = ((float)nearPlane*2.0f)/tb;
- result.m8 = ((float)right + (float)left)/rl;
- result.m9 = ((float)top + (float)bottom)/tb;
- result.m10 = -((float)farPlane + (float)nearPlane)/fn;
- result.m11 = -1.0f;
- result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
-
- return result;
-}
-
-// Get orthographic projection matrix
-RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane)
-{
- Matrix result = { 0 };
-
- float rl = (float)(right - left);
- float tb = (float)(top - bottom);
- float fn = (float)(farPlane - nearPlane);
-
- result.m0 = 2.0f/rl;
- result.m1 = 0.0f;
- result.m2 = 0.0f;
- result.m3 = 0.0f;
- result.m4 = 0.0f;
- result.m5 = 2.0f/tb;
- result.m6 = 0.0f;
- result.m7 = 0.0f;
- result.m8 = 0.0f;
- result.m9 = 0.0f;
- result.m10 = -2.0f/fn;
- result.m11 = 0.0f;
- result.m12 = -((float)left + (float)right)/rl;
- result.m13 = -((float)top + (float)bottom)/tb;
- result.m14 = -((float)farPlane + (float)nearPlane)/fn;
- result.m15 = 1.0f;
-
- return result;
-}
-
-// Get camera look-at matrix (view matrix)
-RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
-{
- Matrix result = { 0 };
-
- float length = 0.0f;
- float ilength = 0.0f;
-
- // Vector3Subtract(eye, target)
- Vector3 vz = { eye.x - target.x, eye.y - target.y, eye.z - target.z };
-
- // Vector3Normalize(vz)
- Vector3 v = vz;
- length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- vz.x *= ilength;
- vz.y *= ilength;
- vz.z *= ilength;
-
- // Vector3CrossProduct(up, vz)
- Vector3 vx = { up.y*vz.z - up.z*vz.y, up.z*vz.x - up.x*vz.z, up.x*vz.y - up.y*vz.x };
-
- // Vector3Normalize(x)
- v = vx;
- length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- vx.x *= ilength;
- vx.y *= ilength;
- vx.z *= ilength;
-
- // Vector3CrossProduct(vz, vx)
- Vector3 vy = { vz.y*vx.z - vz.z*vx.y, vz.z*vx.x - vz.x*vx.z, vz.x*vx.y - vz.y*vx.x };
-
- result.m0 = vx.x;
- result.m1 = vy.x;
- result.m2 = vz.x;
- result.m3 = 0.0f;
- result.m4 = vx.y;
- result.m5 = vy.y;
- result.m6 = vz.y;
- result.m7 = 0.0f;
- result.m8 = vx.z;
- result.m9 = vy.z;
- result.m10 = vz.z;
- result.m11 = 0.0f;
- result.m12 = -(vx.x*eye.x + vx.y*eye.y + vx.z*eye.z); // Vector3DotProduct(vx, eye)
- result.m13 = -(vy.x*eye.x + vy.y*eye.y + vy.z*eye.z); // Vector3DotProduct(vy, eye)
- result.m14 = -(vz.x*eye.x + vz.y*eye.y + vz.z*eye.z); // Vector3DotProduct(vz, eye)
- result.m15 = 1.0f;
-
- return result;
-}
-
-// Get float array of matrix data
-RMAPI float16 MatrixToFloatV(Matrix mat)
-{
- float16 result = { 0 };
-
- result.v[0] = mat.m0;
- result.v[1] = mat.m1;
- result.v[2] = mat.m2;
- result.v[3] = mat.m3;
- result.v[4] = mat.m4;
- result.v[5] = mat.m5;
- result.v[6] = mat.m6;
- result.v[7] = mat.m7;
- result.v[8] = mat.m8;
- result.v[9] = mat.m9;
- result.v[10] = mat.m10;
- result.v[11] = mat.m11;
- result.v[12] = mat.m12;
- result.v[13] = mat.m13;
- result.v[14] = mat.m14;
- result.v[15] = mat.m15;
-
- return result;
-}
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition - Quaternion math
-//----------------------------------------------------------------------------------
-
-// Add two quaternions
-RMAPI Quaternion QuaternionAdd(Quaternion q1, Quaternion q2)
-{
- Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w};
-
- return result;
-}
-
-// Add quaternion and float value
-RMAPI Quaternion QuaternionAddValue(Quaternion q, float add)
-{
- Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add};
-
- return result;
-}
-
-// Subtract two quaternions
-RMAPI Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2)
-{
- Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w};
-
- return result;
-}
-
-// Subtract quaternion and float value
-RMAPI Quaternion QuaternionSubtractValue(Quaternion q, float sub)
-{
- Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub};
-
- return result;
-}
-
-// Get identity quaternion
-RMAPI Quaternion QuaternionIdentity(void)
-{
- Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
-
- return result;
-}
-
-// Computes the length of a quaternion
-RMAPI float QuaternionLength(Quaternion q)
-{
- float result = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
-
- return result;
-}
-
-// Normalize provided quaternion
-RMAPI Quaternion QuaternionNormalize(Quaternion q)
-{
- Quaternion result = { 0 };
-
- float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- if (length == 0.0f) length = 1.0f;
- float ilength = 1.0f/length;
-
- result.x = q.x*ilength;
- result.y = q.y*ilength;
- result.z = q.z*ilength;
- result.w = q.w*ilength;
-
- return result;
-}
-
-// Invert provided quaternion
-RMAPI Quaternion QuaternionInvert(Quaternion q)
-{
- Quaternion result = q;
-
- float lengthSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w;
-
- if (lengthSq != 0.0f)
- {
- float invLength = 1.0f/lengthSq;
-
- result.x *= -invLength;
- result.y *= -invLength;
- result.z *= -invLength;
- result.w *= invLength;
- }
-
- return result;
-}
-
-// Calculate two quaternion multiplication
-RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
-{
- Quaternion result = { 0 };
-
- float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
- float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
-
- result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
- result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
- result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
- result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
-
- return result;
-}
-
-// Scale quaternion by float value
-RMAPI Quaternion QuaternionScale(Quaternion q, float mul)
-{
- Quaternion result = { 0 };
-
- result.x = q.x*mul;
- result.y = q.y*mul;
- result.z = q.z*mul;
- result.w = q.w*mul;
-
- return result;
-}
-
-// Divide two quaternions
-RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2)
-{
- Quaternion result = { q1.x/q2.x, q1.y/q2.y, q1.z/q2.z, q1.w/q2.w };
-
- return result;
-}
-
-// Calculate linear interpolation between two quaternions
-RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
-{
- Quaternion result = { 0 };
-
- result.x = q1.x + amount*(q2.x - q1.x);
- result.y = q1.y + amount*(q2.y - q1.y);
- result.z = q1.z + amount*(q2.z - q1.z);
- result.w = q1.w + amount*(q2.w - q1.w);
-
- return result;
-}
-
-// Calculate slerp-optimized interpolation between two quaternions
-RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
-{
- Quaternion result = { 0 };
-
- // QuaternionLerp(q1, q2, amount)
- result.x = q1.x + amount*(q2.x - q1.x);
- result.y = q1.y + amount*(q2.y - q1.y);
- result.z = q1.z + amount*(q2.z - q1.z);
- result.w = q1.w + amount*(q2.w - q1.w);
-
- // QuaternionNormalize(q);
- Quaternion q = result;
- float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- if (length == 0.0f) length = 1.0f;
- float ilength = 1.0f/length;
-
- result.x = q.x*ilength;
- result.y = q.y*ilength;
- result.z = q.z*ilength;
- result.w = q.w*ilength;
-
- return result;
-}
-
-// Calculates spherical linear interpolation between two quaternions
-RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
-{
- Quaternion result = { 0 };
-
-#if !defined(EPSILON)
- #define EPSILON 0.000001f
-#endif
-
- float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
-
- if (cosHalfTheta < 0)
- {
- q2.x = -q2.x; q2.y = -q2.y; q2.z = -q2.z; q2.w = -q2.w;
- cosHalfTheta = -cosHalfTheta;
- }
-
- if (fabsf(cosHalfTheta) >= 1.0f) result = q1;
- else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
- else
- {
- float halfTheta = acosf(cosHalfTheta);
- float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);
-
- if (fabsf(sinHalfTheta) < EPSILON)
- {
- result.x = (q1.x*0.5f + q2.x*0.5f);
- result.y = (q1.y*0.5f + q2.y*0.5f);
- result.z = (q1.z*0.5f + q2.z*0.5f);
- result.w = (q1.w*0.5f + q2.w*0.5f);
- }
- else
- {
- float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
- float ratioB = sinf(amount*halfTheta)/sinHalfTheta;
-
- result.x = (q1.x*ratioA + q2.x*ratioB);
- result.y = (q1.y*ratioA + q2.y*ratioB);
- result.z = (q1.z*ratioA + q2.z*ratioB);
- result.w = (q1.w*ratioA + q2.w*ratioB);
- }
- }
-
- return result;
-}
-
-// Calculate quaternion based on the rotation from one vector to another
-RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
-{
- Quaternion result = { 0 };
-
- float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z); // Vector3DotProduct(from, to)
- Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to)
-
- result.x = cross.x;
- result.y = cross.y;
- result.z = cross.z;
- result.w = 1.0f + cos2Theta;
-
- // QuaternionNormalize(q);
- // NOTE: Normalize to essentially nlerp the original and identity to 0.5
- Quaternion q = result;
- float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- if (length == 0.0f) length = 1.0f;
- float ilength = 1.0f/length;
-
- result.x = q.x*ilength;
- result.y = q.y*ilength;
- result.z = q.z*ilength;
- result.w = q.w*ilength;
-
- return result;
-}
-
-// Get a quaternion for a given rotation matrix
-RMAPI Quaternion QuaternionFromMatrix(Matrix mat)
-{
- Quaternion result = { 0 };
-
- float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10;
- float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10;
- float fourYSquaredMinus1 = mat.m5 - mat.m0 - mat.m10;
- float fourZSquaredMinus1 = mat.m10 - mat.m0 - mat.m5;
-
- int biggestIndex = 0;
- float fourBiggestSquaredMinus1 = fourWSquaredMinus1;
- if (fourXSquaredMinus1 > fourBiggestSquaredMinus1)
- {
- fourBiggestSquaredMinus1 = fourXSquaredMinus1;
- biggestIndex = 1;
- }
-
- if (fourYSquaredMinus1 > fourBiggestSquaredMinus1)
- {
- fourBiggestSquaredMinus1 = fourYSquaredMinus1;
- biggestIndex = 2;
- }
-
- if (fourZSquaredMinus1 > fourBiggestSquaredMinus1)
- {
- fourBiggestSquaredMinus1 = fourZSquaredMinus1;
- biggestIndex = 3;
- }
-
- float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f)*0.5f;
- float mult = 0.25f / biggestVal;
-
- switch (biggestIndex)
- {
- case 0:
- result.w = biggestVal;
- result.x = (mat.m6 - mat.m9)*mult;
- result.y = (mat.m8 - mat.m2)*mult;
- result.z = (mat.m1 - mat.m4)*mult;
- break;
- case 1:
- result.x = biggestVal;
- result.w = (mat.m6 - mat.m9)*mult;
- result.y = (mat.m1 + mat.m4)*mult;
- result.z = (mat.m8 + mat.m2)*mult;
- break;
- case 2:
- result.y = biggestVal;
- result.w = (mat.m8 - mat.m2)*mult;
- result.x = (mat.m1 + mat.m4)*mult;
- result.z = (mat.m6 + mat.m9)*mult;
- break;
- case 3:
- result.z = biggestVal;
- result.w = (mat.m1 - mat.m4)*mult;
- result.x = (mat.m8 + mat.m2)*mult;
- result.y = (mat.m6 + mat.m9)*mult;
- break;
- }
-
- return result;
-}
-
-// Get a matrix for a given quaternion
-RMAPI Matrix QuaternionToMatrix(Quaternion q)
-{
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
-
- float a2 = q.x*q.x;
- float b2 = q.y*q.y;
- float c2 = q.z*q.z;
- float ac = q.x*q.z;
- float ab = q.x*q.y;
- float bc = q.y*q.z;
- float ad = q.w*q.x;
- float bd = q.w*q.y;
- float cd = q.w*q.z;
-
- result.m0 = 1 - 2*(b2 + c2);
- result.m1 = 2*(ab + cd);
- result.m2 = 2*(ac - bd);
-
- result.m4 = 2*(ab - cd);
- result.m5 = 1 - 2*(a2 + c2);
- result.m6 = 2*(bc + ad);
-
- result.m8 = 2*(ac + bd);
- result.m9 = 2*(bc - ad);
- result.m10 = 1 - 2*(a2 + b2);
-
- return result;
-}
-
-// Get rotation quaternion for an angle and axis
-// NOTE: Angle must be provided in radians
-RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
-{
- Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
-
- float axisLength = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
-
- if (axisLength != 0.0f)
- {
- angle *= 0.5f;
-
- float length = 0.0f;
- float ilength = 0.0f;
-
- // Vector3Normalize(axis)
- Vector3 v = axis;
- length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- axis.x *= ilength;
- axis.y *= ilength;
- axis.z *= ilength;
-
- float sinres = sinf(angle);
- float cosres = cosf(angle);
-
- result.x = axis.x*sinres;
- result.y = axis.y*sinres;
- result.z = axis.z*sinres;
- result.w = cosres;
-
- // QuaternionNormalize(q);
- Quaternion q = result;
- length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- result.x = q.x*ilength;
- result.y = q.y*ilength;
- result.z = q.z*ilength;
- result.w = q.w*ilength;
- }
-
- return result;
-}
-
-// Get the rotation angle and axis for a given quaternion
-RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
-{
- if (fabsf(q.w) > 1.0f)
- {
- // QuaternionNormalize(q);
- float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- if (length == 0.0f) length = 1.0f;
- float ilength = 1.0f/length;
-
- q.x = q.x*ilength;
- q.y = q.y*ilength;
- q.z = q.z*ilength;
- q.w = q.w*ilength;
- }
-
- Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
- float resAngle = 2.0f*acosf(q.w);
- float den = sqrtf(1.0f - q.w*q.w);
-
- if (den > EPSILON)
- {
- resAxis.x = q.x/den;
- resAxis.y = q.y/den;
- resAxis.z = q.z/den;
- }
- else
- {
- // This occurs when the angle is zero.
- // Not a problem: just set an arbitrary normalized axis.
- resAxis.x = 1.0f;
- }
-
- *outAxis = resAxis;
- *outAngle = resAngle;
-}
-
-// Get the quaternion equivalent to Euler angles
-// NOTE: Rotation order is ZYX
-RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll)
-{
- Quaternion result = { 0 };
-
- float x0 = cosf(pitch*0.5f);
- float x1 = sinf(pitch*0.5f);
- float y0 = cosf(yaw*0.5f);
- float y1 = sinf(yaw*0.5f);
- float z0 = cosf(roll*0.5f);
- float z1 = sinf(roll*0.5f);
-
- result.x = x1*y0*z0 - x0*y1*z1;
- result.y = x0*y1*z0 + x1*y0*z1;
- result.z = x0*y0*z1 - x1*y1*z0;
- result.w = x0*y0*z0 + x1*y1*z1;
-
- return result;
-}
-
-// Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
-// NOTE: Angles are returned in a Vector3 struct in radians
-RMAPI Vector3 QuaternionToEuler(Quaternion q)
-{
- Vector3 result = { 0 };
-
- // Roll (x-axis rotation)
- float x0 = 2.0f*(q.w*q.x + q.y*q.z);
- float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
- result.x = atan2f(x0, x1);
-
- // Pitch (y-axis rotation)
- float y0 = 2.0f*(q.w*q.y - q.z*q.x);
- y0 = y0 > 1.0f ? 1.0f : y0;
- y0 = y0 < -1.0f ? -1.0f : y0;
- result.y = asinf(y0);
-
- // Yaw (z-axis rotation)
- float z0 = 2.0f*(q.w*q.z + q.x*q.y);
- float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
- result.z = atan2f(z0, z1);
-
- return result;
-}
-
-// Transform a quaternion given a transformation matrix
-RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat)
-{
- Quaternion result = { 0 };
-
- result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
- result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
- result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
- result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
-
- return result;
-}
-
-// Check whether two given quaternions are almost equal
-RMAPI int QuaternionEquals(Quaternion p, Quaternion q)
-{
-#if !defined(EPSILON)
- #define EPSILON 0.000001f
-#endif
-
- int result = (((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
- ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
- ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
- ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))) ||
- (((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
- ((fabsf(p.y + q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
- ((fabsf(p.z + q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
- ((fabsf(p.w + q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w))))));
-
- return result;
-}
-
-#endif // RAYMATH_H