diff --git a/third_party_build/wasm_make_raylib.sh b/third_party_build/wasm_make_raylib.sh new file mode 100755 index 0000000..c693442 --- /dev/null +++ b/third_party_build/wasm_make_raylib.sh @@ -0,0 +1,126 @@ +#!/usr/bin/env bash + +EMSDK_ENV_SCRIPT="${HOME}/git/emsdk/emsdk_env.sh" +OUTPUT_DIR="$(dirname "$0")/raylib_out" +CLONE_DIR="$(dirname "$0")/raylib_clone" +RAYLIB_GIT_URL="https://github.com/raysan5/raylib.git" +RAYLIB_GIT_TAG="5.0" + +while getopts 'o:e:c:h' opt; do + case $opt in + 'o') + OUTPUT_DIR="$OPTARG";; + 'e') + EMSDK_ENV_SCRIPT="$OPTARG";; + 'c') + CLONE_DIR="$OPTARG";; + 'h') + echo "-o " + echo "-e " + echo "-c " + exit 0;; + esac +done + +# Validate args + +if [[ -z "$OUTPUT_DIR" ]]; then + echo 'ERROR: The OUTPUT_DIR variable is an empty string!' + exit 1 +elif ! [[ -d "$OUTPUT_DIR" ]]; then + if ! mkdir -p "$OUTPUT_DIR"; then + echo "ERROR: Failed to 'mkdir -p \"$OUTPUT_DIR\"!" + exit 2 + fi +fi + +pushd "$OUTPUT_DIR" >&/dev/null +OUTPUT_DIR="$(pwd)" +popd >&/dev/null + +#echo "Using output dir: $OUTPUT_DIR" + +pushd "$CLONE_DIR" >&/dev/null +CLONE_DIR="$(pwd)" +popd >&/dev/null + +#echo "Using clone dir: $CLONE_DIR" + +if ! [[ -r "$EMSDK_ENV_SCRIPT" ]]; then + echo "ERROR: \"$EMSDK_ENV_SCRIPT\" is not readable!" + exit 3 +fi + +# Validate and set up Raylib git clone + +if ! [[ -d "$CLONE_DIR" ]]; then + if ! git clone --depth 1 --no-single-branch "$RAYLIB_GIT_URL" "$CLONE_DIR"; then + echo "ERROR: Failed to clone Raylib into \"$CLONE_DIR\"!" + exit 4 + fi +elif ! (cd "$CLONE_DIR" && git fetch --all -p && git checkout "$RAYLIB_GIT_TAG"); then + echo "ERROR: Failed to fetch/checkout in Raylib dir!" + exit 5 +fi + +function cleanup() { + cd "$CLONE_DIR" + git clean -xfd + git restore . +} + +trap cleanup EXIT + +set -ve + +pushd "$CLONE_DIR" >&/dev/null + +# Patch for building for wasm. + +patch -N -p1 <<"EOF" +Do not allow F12 usage as that is used in the browser for debugging purposes. + +For some reason, the variable `screenshotCounter` is still used. + +--- a/src/config.h ++++ b/src/config.h +@@ -59,7 +59,7 @@ + // Use a partial-busy wait loop, in this case frame sleeps for most of the time, but then runs a busy loop at the end for accuracy + #define SUPPORT_PARTIALBUSY_WAIT_LOOP 1 + // Allow automatic screen capture of current screen pressing F12, defined in KeyCallback() +-#define SUPPORT_SCREEN_CAPTURE 1 ++//#define SUPPORT_SCREEN_CAPTURE 1 + // Allow automatic gif recording of current screen pressing CTRL+F12, defined in KeyCallback() + #define SUPPORT_GIF_RECORDING 1 + // Support CompressData() and DecompressData() functions +--- a/src/rcore.c ++++ b/src/rcore.c +@@ -349,9 +349,7 @@ RLAPI const char *raylib_version = RAYLIB_VERSION; // raylib version exported s + + CoreData CORE = { 0 }; // Global CORE state context + +-#if defined(SUPPORT_SCREEN_CAPTURE) + static int screenshotCounter = 0; // Screenshots counter +-#endif + + #if defined(SUPPORT_GIF_RECORDING) + int gifFrameCounter = 0; // GIF frames counter +EOF + +# Do the build +pushd src >&/dev/null +(source "$EMSDK_ENV_SCRIPT"; make PLATFORM=PLATFORM_WEB) + +# Save the library +install -D -m444 libraylib.a "$OUTPUT_DIR/lib/libraylib.a" + +# Save the library and relevant headers +for header in libraylib.a raylib.h raymath.h; do + install -D -m444 "$header" "$OUTPUT_DIR/include/$header" +done + +popd >&/dev/null + +popd >&/dev/null + +echo Success diff --git a/wasm_build/.gitignore b/wasm_build/.gitignore index 913a119..3867d7f 100644 --- a/wasm_build/.gitignore +++ b/wasm_build/.gitignore @@ -3,3 +3,5 @@ /jumpartifact.com_demo_0.wasm /jumpartifact.com_demo_0.data /objdir/ +/raylib +/raylib_git diff --git a/wasm_build/Makefile b/wasm_build/Makefile index 37f6cfa..f3fed9d 100644 --- a/wasm_build/Makefile +++ b/wasm_build/Makefile @@ -42,9 +42,12 @@ CXX = source ${HOME}/git/emsdk/emsdk_env.sh &>/dev/null && em++ all: | format jumpartifact.com_demo_0.html -jumpartifact.com_demo_0.html: ${OBJECTS} ${HEADERS} +raylib/lib/libraylib.a raylib/include/raylib.h raylib/include/raymath.h: + ../third_party_build/wasm_make_raylib.sh -o raylib -c raylib_git + +jumpartifact.com_demo_0.html: raylib/lib/libraylib.a raylib/include/raylib.h raylib/include/raymath.h ${OBJECTS} ${HEADERS} ${CXX} -std=c++20 -o jumpartifact.com_demo_0.html \ - -s USE_GLFW=3 -I../wasm_include -L../wasm_lib -lraylib \ + -s USE_GLFW=3 -Iraylib/include -Lraylib/lib -lraylib \ --shell-file custom_shell.html \ -sEXPORTED_FUNCTIONS=_main \ -sEXPORTED_RUNTIME_METHODS=ccall \ @@ -68,4 +71,4 @@ format: ${OBJDIR}/%.cc.o: $$(subst PREVDIR,..,%.cc) ${HEADERS} @mkdir -p "$(dir $@)" - ${CXX} -std=c++20 -I../wasm_include -c ${OTHER_FLAGS} -o $@ $< + ${CXX} -std=c++20 -Iraylib/include -c ${OTHER_FLAGS} -o $@ $< diff --git a/wasm_include/raylib.h b/wasm_include/raylib.h deleted file mode 100644 index 1c4c4a0..0000000 --- a/wasm_include/raylib.h +++ /dev/null @@ -1,1662 +0,0 @@ -/********************************************************************************************** -* -* raylib v5.0 - A simple and easy-to-use library to enjoy videogames programming (www.raylib.com) -* -* FEATURES: -* - NO external dependencies, all required libraries included with raylib -* - Multiplatform: Windows, Linux, FreeBSD, OpenBSD, NetBSD, DragonFly, -* MacOS, Haiku, Android, Raspberry Pi, DRM native, HTML5. -* - Written in plain C code (C99) in PascalCase/camelCase notation -* - Hardware accelerated with OpenGL (1.1, 2.1, 3.3, 4.3 or ES2 - choose at compile) -* - Unique OpenGL abstraction layer (usable as standalone module): [rlgl] -* - Multiple Fonts formats supported (TTF, XNA fonts, AngelCode fonts) -* - Outstanding texture formats support, including compressed formats (DXT, ETC, ASTC) -* - Full 3d support for 3d Shapes, Models, Billboards, Heightmaps and more! -* - Flexible Materials system, supporting classic maps and PBR maps -* - Animated 3D models supported (skeletal bones animation) (IQM) -* - Shaders support, including Model shaders and Postprocessing shaders -* - Powerful math module for Vector, Matrix and Quaternion operations: [raymath] -* - Audio loading and playing with streaming support (WAV, OGG, MP3, FLAC, XM, MOD) -* - VR stereo rendering with configurable HMD device parameters -* - Bindings to multiple programming languages available! -* -* NOTES: -* - One default Font is loaded on InitWindow()->LoadFontDefault() [core, text] -* - One default Texture2D is loaded on rlglInit(), 1x1 white pixel R8G8B8A8 [rlgl] (OpenGL 3.3 or ES2) -* - One default Shader is loaded on rlglInit()->rlLoadShaderDefault() [rlgl] (OpenGL 3.3 or ES2) -* - One default RenderBatch is loaded on rlglInit()->rlLoadRenderBatch() [rlgl] (OpenGL 3.3 or ES2) -* -* DEPENDENCIES (included): -* [rcore] rglfw (Camilla Löwy - github.com/glfw/glfw) for window/context management and input (PLATFORM_DESKTOP) -* [rlgl] glad (David Herberth - github.com/Dav1dde/glad) for OpenGL 3.3 extensions loading (PLATFORM_DESKTOP) -* [raudio] miniaudio (David Reid - github.com/mackron/miniaudio) for audio device/context management -* -* OPTIONAL DEPENDENCIES (included): -* [rcore] msf_gif (Miles Fogle) for GIF recording -* [rcore] sinfl (Micha Mettke) for DEFLATE decompression algorithm -* [rcore] sdefl (Micha Mettke) for DEFLATE compression algorithm -* [rtextures] stb_image (Sean Barret) for images loading (BMP, TGA, PNG, JPEG, HDR...) -* [rtextures] stb_image_write (Sean Barret) for image writing (BMP, TGA, PNG, JPG) -* [rtextures] stb_image_resize (Sean Barret) for image resizing algorithms -* [rtext] stb_truetype (Sean Barret) for ttf fonts loading -* [rtext] stb_rect_pack (Sean Barret) for rectangles packing -* [rmodels] par_shapes (Philip Rideout) for parametric 3d shapes generation -* [rmodels] tinyobj_loader_c (Syoyo Fujita) for models loading (OBJ, MTL) -* [rmodels] cgltf (Johannes Kuhlmann) for models loading (glTF) -* [rmodels] Model3D (bzt) for models loading (M3D, https://bztsrc.gitlab.io/model3d) -* [raudio] dr_wav (David Reid) for WAV audio file loading -* [raudio] dr_flac (David Reid) for FLAC audio file loading -* [raudio] dr_mp3 (David Reid) for MP3 audio file loading -* [raudio] stb_vorbis (Sean Barret) for OGG audio loading -* [raudio] jar_xm (Joshua Reisenauer) for XM audio module loading -* [raudio] jar_mod (Joshua Reisenauer) for MOD audio module loading -* -* -* LICENSE: zlib/libpng -* -* raylib is licensed under an unmodified zlib/libpng license, which is an OSI-certified, -* BSD-like license that allows static linking with closed source software: -* -* Copyright (c) 2013-2023 Ramon Santamaria (@raysan5) -* -* This software is provided "as-is", without any express or implied warranty. In no event -* will the authors be held liable for any damages arising from the use of this software. -* -* Permission is granted to anyone to use this software for any purpose, including commercial -* applications, and to alter it and redistribute it freely, subject to the following restrictions: -* -* 1. The origin of this software must not be misrepresented; you must not claim that you -* wrote the original software. If you use this software in a product, an acknowledgment -* in the product documentation would be appreciated but is not required. -* -* 2. Altered source versions must be plainly marked as such, and must not be misrepresented -* as being the original software. -* -* 3. This notice may not be removed or altered from any source distribution. -* -**********************************************************************************************/ - -#ifndef RAYLIB_H -#define RAYLIB_H - -#include // Required for: va_list - Only used by TraceLogCallback - -#define RAYLIB_VERSION_MAJOR 5 -#define RAYLIB_VERSION_MINOR 0 -#define RAYLIB_VERSION_PATCH 0 -#define RAYLIB_VERSION "5.0" - -// Function specifiers in case library is build/used as a shared library (Windows) -// NOTE: Microsoft specifiers to tell compiler that symbols are imported/exported from a .dll -#if defined(_WIN32) - #if defined(BUILD_LIBTYPE_SHARED) - #if defined(__TINYC__) - #define __declspec(x) __attribute__((x)) - #endif - #define RLAPI __declspec(dllexport) // We are building the library as a Win32 shared library (.dll) - #elif defined(USE_LIBTYPE_SHARED) - #define RLAPI __declspec(dllimport) // We are using the library as a Win32 shared library (.dll) - #endif -#endif - -#ifndef RLAPI - #define RLAPI // Functions defined as 'extern' by default (implicit specifiers) -#endif - -//---------------------------------------------------------------------------------- -// Some basic Defines -//---------------------------------------------------------------------------------- -#ifndef PI - #define PI 3.14159265358979323846f -#endif -#ifndef DEG2RAD - #define DEG2RAD (PI/180.0f) -#endif -#ifndef RAD2DEG - #define RAD2DEG (180.0f/PI) -#endif - -// Allow custom memory allocators -// NOTE: Require recompiling raylib sources -#ifndef RL_MALLOC - #define RL_MALLOC(sz) malloc(sz) -#endif -#ifndef RL_CALLOC - #define RL_CALLOC(n,sz) calloc(n,sz) -#endif -#ifndef RL_REALLOC - #define RL_REALLOC(ptr,sz) realloc(ptr,sz) -#endif -#ifndef RL_FREE - #define RL_FREE(ptr) free(ptr) -#endif - -// NOTE: MSVC C++ compiler does not support compound literals (C99 feature) -// Plain structures in C++ (without constructors) can be initialized with { } -// This is called aggregate initialization (C++11 feature) -#if defined(__cplusplus) - #define CLITERAL(type) type -#else - #define CLITERAL(type) (type) -#endif - -// Some compilers (mostly macos clang) default to C++98, -// where aggregate initialization can't be used -// So, give a more clear error stating how to fix this -#if !defined(_MSC_VER) && (defined(__cplusplus) && __cplusplus < 201103L) - #error "C++11 or later is required. Add -std=c++11" -#endif - -// NOTE: We set some defines with some data types declared by raylib -// Other modules (raymath, rlgl) also require some of those types, so, -// to be able to use those other modules as standalone (not depending on raylib) -// this defines are very useful for internal check and avoid type (re)definitions -#define RL_COLOR_TYPE -#define RL_RECTANGLE_TYPE -#define RL_VECTOR2_TYPE -#define RL_VECTOR3_TYPE -#define RL_VECTOR4_TYPE -#define RL_QUATERNION_TYPE -#define RL_MATRIX_TYPE - -// Some Basic Colors -// NOTE: Custom raylib color palette for amazing visuals on WHITE background -#define LIGHTGRAY CLITERAL(Color){ 200, 200, 200, 255 } // Light Gray -#define GRAY CLITERAL(Color){ 130, 130, 130, 255 } // Gray -#define DARKGRAY CLITERAL(Color){ 80, 80, 80, 255 } // Dark Gray -#define YELLOW CLITERAL(Color){ 253, 249, 0, 255 } // Yellow -#define GOLD CLITERAL(Color){ 255, 203, 0, 255 } // Gold -#define ORANGE CLITERAL(Color){ 255, 161, 0, 255 } // Orange -#define PINK CLITERAL(Color){ 255, 109, 194, 255 } // Pink -#define RED CLITERAL(Color){ 230, 41, 55, 255 } // Red -#define MAROON CLITERAL(Color){ 190, 33, 55, 255 } // Maroon -#define GREEN CLITERAL(Color){ 0, 228, 48, 255 } // Green -#define LIME CLITERAL(Color){ 0, 158, 47, 255 } // Lime -#define DARKGREEN CLITERAL(Color){ 0, 117, 44, 255 } // Dark Green -#define SKYBLUE CLITERAL(Color){ 102, 191, 255, 255 } // Sky Blue -#define BLUE CLITERAL(Color){ 0, 121, 241, 255 } // Blue -#define DARKBLUE CLITERAL(Color){ 0, 82, 172, 255 } // Dark Blue -#define PURPLE CLITERAL(Color){ 200, 122, 255, 255 } // Purple -#define VIOLET CLITERAL(Color){ 135, 60, 190, 255 } // Violet -#define DARKPURPLE CLITERAL(Color){ 112, 31, 126, 255 } // Dark Purple -#define BEIGE CLITERAL(Color){ 211, 176, 131, 255 } // Beige -#define BROWN CLITERAL(Color){ 127, 106, 79, 255 } // Brown -#define DARKBROWN CLITERAL(Color){ 76, 63, 47, 255 } // Dark Brown - -#define WHITE CLITERAL(Color){ 255, 255, 255, 255 } // White -#define BLACK CLITERAL(Color){ 0, 0, 0, 255 } // Black -#define BLANK CLITERAL(Color){ 0, 0, 0, 0 } // Blank (Transparent) -#define MAGENTA CLITERAL(Color){ 255, 0, 255, 255 } // Magenta -#define RAYWHITE CLITERAL(Color){ 245, 245, 245, 255 } // My own White (raylib logo) - -//---------------------------------------------------------------------------------- -// Structures Definition -//---------------------------------------------------------------------------------- -// Boolean type -#if (defined(__STDC__) && __STDC_VERSION__ >= 199901L) || (defined(_MSC_VER) && _MSC_VER >= 1800) - #include -#elif !defined(__cplusplus) && !defined(bool) - typedef enum bool { false = 0, true = !false } bool; - #define RL_BOOL_TYPE -#endif - -// Vector2, 2 components -typedef struct Vector2 { - float x; // Vector x component - float y; // Vector y component -} Vector2; - -// Vector3, 3 components -typedef struct Vector3 { - float x; // Vector x component - float y; // Vector y component - float z; // Vector z component -} Vector3; - -// Vector4, 4 components -typedef struct Vector4 { - float x; // Vector x component - float y; // Vector y component - float z; // Vector z component - float w; // Vector w component -} Vector4; - -// Quaternion, 4 components (Vector4 alias) -typedef Vector4 Quaternion; - -// Matrix, 4x4 components, column major, OpenGL style, right-handed -typedef struct Matrix { - float m0, m4, m8, m12; // Matrix first row (4 components) - float m1, m5, m9, m13; // Matrix second row (4 components) - float m2, m6, m10, m14; // Matrix third row (4 components) - float m3, m7, m11, m15; // Matrix fourth row (4 components) -} Matrix; - -// Color, 4 components, R8G8B8A8 (32bit) -typedef struct Color { - unsigned char r; // Color red value - unsigned char g; // Color green value - unsigned char b; // Color blue value - unsigned char a; // Color alpha value -} Color; - -// Rectangle, 4 components -typedef struct Rectangle { - float x; // Rectangle top-left corner position x - float y; // Rectangle top-left corner position y - float width; // Rectangle width - float height; // Rectangle height -} Rectangle; - -// Image, pixel data stored in CPU memory (RAM) -typedef struct Image { - void *data; // Image raw data - int width; // Image base width - int height; // Image base height - int mipmaps; // Mipmap levels, 1 by default - int format; // Data format (PixelFormat type) -} Image; - -// Texture, tex data stored in GPU memory (VRAM) -typedef struct Texture { - unsigned int id; // OpenGL texture id - int width; // Texture base width - int height; // Texture base height - int mipmaps; // Mipmap levels, 1 by default - int format; // Data format (PixelFormat type) -} Texture; - -// Texture2D, same as Texture -typedef Texture Texture2D; - -// TextureCubemap, same as Texture -typedef Texture TextureCubemap; - -// RenderTexture, fbo for texture rendering -typedef struct RenderTexture { - unsigned int id; // OpenGL framebuffer object id - Texture texture; // Color buffer attachment texture - Texture depth; // Depth buffer attachment texture -} RenderTexture; - -// RenderTexture2D, same as RenderTexture -typedef RenderTexture RenderTexture2D; - -// NPatchInfo, n-patch layout info -typedef struct NPatchInfo { - Rectangle source; // Texture source rectangle - int left; // Left border offset - int top; // Top border offset - int right; // Right border offset - int bottom; // Bottom border offset - int layout; // Layout of the n-patch: 3x3, 1x3 or 3x1 -} NPatchInfo; - -// GlyphInfo, font characters glyphs info -typedef struct GlyphInfo { - int value; // Character value (Unicode) - int offsetX; // Character offset X when drawing - int offsetY; // Character offset Y when drawing - int advanceX; // Character advance position X - Image image; // Character image data -} GlyphInfo; - -// Font, font texture and GlyphInfo array data -typedef struct Font { - int baseSize; // Base size (default chars height) - int glyphCount; // Number of glyph characters - int glyphPadding; // Padding around the glyph characters - Texture2D texture; // Texture atlas containing the glyphs - Rectangle *recs; // Rectangles in texture for the glyphs - GlyphInfo *glyphs; // Glyphs info data -} Font; - -// Camera, defines position/orientation in 3d space -typedef struct Camera3D { - Vector3 position; // Camera position - Vector3 target; // Camera target it looks-at - Vector3 up; // Camera up vector (rotation over its axis) - float fovy; // Camera field-of-view aperture in Y (degrees) in perspective, used as near plane width in orthographic - int projection; // Camera projection: CAMERA_PERSPECTIVE or CAMERA_ORTHOGRAPHIC -} Camera3D; - -typedef Camera3D Camera; // Camera type fallback, defaults to Camera3D - -// Camera2D, defines position/orientation in 2d space -typedef struct Camera2D { - Vector2 offset; // Camera offset (displacement from target) - Vector2 target; // Camera target (rotation and zoom origin) - float rotation; // Camera rotation in degrees - float zoom; // Camera zoom (scaling), should be 1.0f by default -} Camera2D; - -// Mesh, vertex data and vao/vbo -typedef struct Mesh { - int vertexCount; // Number of vertices stored in arrays - int triangleCount; // Number of triangles stored (indexed or not) - - // Vertex attributes data - float *vertices; // Vertex position (XYZ - 3 components per vertex) (shader-location = 0) - float *texcoords; // Vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1) - float *texcoords2; // Vertex texture second coordinates (UV - 2 components per vertex) (shader-location = 5) - float *normals; // Vertex normals (XYZ - 3 components per vertex) (shader-location = 2) - float *tangents; // Vertex tangents (XYZW - 4 components per vertex) (shader-location = 4) - unsigned char *colors; // Vertex colors (RGBA - 4 components per vertex) (shader-location = 3) - unsigned short *indices; // Vertex indices (in case vertex data comes indexed) - - // Animation vertex data - float *animVertices; // Animated vertex positions (after bones transformations) - float *animNormals; // Animated normals (after bones transformations) - unsigned char *boneIds; // Vertex bone ids, max 255 bone ids, up to 4 bones influence by vertex (skinning) - float *boneWeights; // Vertex bone weight, up to 4 bones influence by vertex (skinning) - - // OpenGL identifiers - unsigned int vaoId; // OpenGL Vertex Array Object id - unsigned int *vboId; // OpenGL Vertex Buffer Objects id (default vertex data) -} Mesh; - -// Shader -typedef struct Shader { - unsigned int id; // Shader program id - int *locs; // Shader locations array (RL_MAX_SHADER_LOCATIONS) -} Shader; - -// MaterialMap -typedef struct MaterialMap { - Texture2D texture; // Material map texture - Color color; // Material map color - float value; // Material map value -} MaterialMap; - -// Material, includes shader and maps -typedef struct Material { - Shader shader; // Material shader - MaterialMap *maps; // Material maps array (MAX_MATERIAL_MAPS) - float params[4]; // Material generic parameters (if required) -} Material; - -// Transform, vertex transformation data -typedef struct Transform { - Vector3 translation; // Translation - Quaternion rotation; // Rotation - Vector3 scale; // Scale -} Transform; - -// Bone, skeletal animation bone -typedef struct BoneInfo { - char name[32]; // Bone name - int parent; // Bone parent -} BoneInfo; - -// Model, meshes, materials and animation data -typedef struct Model { - Matrix transform; // Local transform matrix - - int meshCount; // Number of meshes - int materialCount; // Number of materials - Mesh *meshes; // Meshes array - Material *materials; // Materials array - int *meshMaterial; // Mesh material number - - // Animation data - int boneCount; // Number of bones - BoneInfo *bones; // Bones information (skeleton) - Transform *bindPose; // Bones base transformation (pose) -} Model; - -// ModelAnimation -typedef struct ModelAnimation { - int boneCount; // Number of bones - int frameCount; // Number of animation frames - BoneInfo *bones; // Bones information (skeleton) - Transform **framePoses; // Poses array by frame - char name[32]; // Animation name -} ModelAnimation; - -// Ray, ray for raycasting -typedef struct Ray { - Vector3 position; // Ray position (origin) - Vector3 direction; // Ray direction -} Ray; - -// RayCollision, ray hit information -typedef struct RayCollision { - bool hit; // Did the ray hit something? - float distance; // Distance to the nearest hit - Vector3 point; // Point of the nearest hit - Vector3 normal; // Surface normal of hit -} RayCollision; - -// BoundingBox -typedef struct BoundingBox { - Vector3 min; // Minimum vertex box-corner - Vector3 max; // Maximum vertex box-corner -} BoundingBox; - -// Wave, audio wave data -typedef struct Wave { - unsigned int frameCount; // Total number of frames (considering channels) - unsigned int sampleRate; // Frequency (samples per second) - unsigned int sampleSize; // Bit depth (bits per sample): 8, 16, 32 (24 not supported) - unsigned int channels; // Number of channels (1-mono, 2-stereo, ...) - void *data; // Buffer data pointer -} Wave; - -// Opaque structs declaration -// NOTE: Actual structs are defined internally in raudio module -typedef struct rAudioBuffer rAudioBuffer; -typedef struct rAudioProcessor rAudioProcessor; - -// AudioStream, custom audio stream -typedef struct AudioStream { - rAudioBuffer *buffer; // Pointer to internal data used by the audio system - rAudioProcessor *processor; // Pointer to internal data processor, useful for audio effects - - unsigned int sampleRate; // Frequency (samples per second) - unsigned int sampleSize; // Bit depth (bits per sample): 8, 16, 32 (24 not supported) - unsigned int channels; // Number of channels (1-mono, 2-stereo, ...) -} AudioStream; - -// Sound -typedef struct Sound { - AudioStream stream; // Audio stream - unsigned int frameCount; // Total number of frames (considering channels) -} Sound; - -// Music, audio stream, anything longer than ~10 seconds should be streamed -typedef struct Music { - AudioStream stream; // Audio stream - unsigned int frameCount; // Total number of frames (considering channels) - bool looping; // Music looping enable - - int ctxType; // Type of music context (audio filetype) - void *ctxData; // Audio context data, depends on type -} Music; - -// VrDeviceInfo, Head-Mounted-Display device parameters -typedef struct VrDeviceInfo { - int hResolution; // Horizontal resolution in pixels - int vResolution; // Vertical resolution in pixels - float hScreenSize; // Horizontal size in meters - float vScreenSize; // Vertical size in meters - float vScreenCenter; // Screen center in meters - float eyeToScreenDistance; // Distance between eye and display in meters - float lensSeparationDistance; // Lens separation distance in meters - float interpupillaryDistance; // IPD (distance between pupils) in meters - float lensDistortionValues[4]; // Lens distortion constant parameters - float chromaAbCorrection[4]; // Chromatic aberration correction parameters -} VrDeviceInfo; - -// VrStereoConfig, VR stereo rendering configuration for simulator -typedef struct VrStereoConfig { - Matrix projection[2]; // VR projection matrices (per eye) - Matrix viewOffset[2]; // VR view offset matrices (per eye) - float leftLensCenter[2]; // VR left lens center - float rightLensCenter[2]; // VR right lens center - float leftScreenCenter[2]; // VR left screen center - float rightScreenCenter[2]; // VR right screen center - float scale[2]; // VR distortion scale - float scaleIn[2]; // VR distortion scale in -} VrStereoConfig; - -// File path list -typedef struct FilePathList { - unsigned int capacity; // Filepaths max entries - unsigned int count; // Filepaths entries count - char **paths; // Filepaths entries -} FilePathList; - -// Automation event -typedef struct AutomationEvent { - unsigned int frame; // Event frame - unsigned int type; // Event type (AutomationEventType) - int params[4]; // Event parameters (if required) -} AutomationEvent; - -// Automation event list -typedef struct AutomationEventList { - unsigned int capacity; // Events max entries (MAX_AUTOMATION_EVENTS) - unsigned int count; // Events entries count - AutomationEvent *events; // Events entries -} AutomationEventList; - -//---------------------------------------------------------------------------------- -// Enumerators Definition -//---------------------------------------------------------------------------------- -// System/Window config flags -// NOTE: Every bit registers one state (use it with bit masks) -// By default all flags are set to 0 -typedef enum { - FLAG_VSYNC_HINT = 0x00000040, // Set to try enabling V-Sync on GPU - FLAG_FULLSCREEN_MODE = 0x00000002, // Set to run program in fullscreen - FLAG_WINDOW_RESIZABLE = 0x00000004, // Set to allow resizable window - FLAG_WINDOW_UNDECORATED = 0x00000008, // Set to disable window decoration (frame and buttons) - FLAG_WINDOW_HIDDEN = 0x00000080, // Set to hide window - FLAG_WINDOW_MINIMIZED = 0x00000200, // Set to minimize window (iconify) - FLAG_WINDOW_MAXIMIZED = 0x00000400, // Set to maximize window (expanded to monitor) - FLAG_WINDOW_UNFOCUSED = 0x00000800, // Set to window non focused - FLAG_WINDOW_TOPMOST = 0x00001000, // Set to window always on top - FLAG_WINDOW_ALWAYS_RUN = 0x00000100, // Set to allow windows running while minimized - FLAG_WINDOW_TRANSPARENT = 0x00000010, // Set to allow transparent framebuffer - FLAG_WINDOW_HIGHDPI = 0x00002000, // Set to support HighDPI - FLAG_WINDOW_MOUSE_PASSTHROUGH = 0x00004000, // Set to support mouse passthrough, only supported when FLAG_WINDOW_UNDECORATED - FLAG_BORDERLESS_WINDOWED_MODE = 0x00008000, // Set to run program in borderless windowed mode - FLAG_MSAA_4X_HINT = 0x00000020, // Set to try enabling MSAA 4X - FLAG_INTERLACED_HINT = 0x00010000 // Set to try enabling interlaced video format (for V3D) -} ConfigFlags; - -// Trace log level -// NOTE: Organized by priority level -typedef enum { - LOG_ALL = 0, // Display all logs - LOG_TRACE, // Trace logging, intended for internal use only - LOG_DEBUG, // Debug logging, used for internal debugging, it should be disabled on release builds - LOG_INFO, // Info logging, used for program execution info - LOG_WARNING, // Warning logging, used on recoverable failures - LOG_ERROR, // Error logging, used on unrecoverable failures - LOG_FATAL, // Fatal logging, used to abort program: exit(EXIT_FAILURE) - LOG_NONE // Disable logging -} TraceLogLevel; - -// Keyboard keys (US keyboard layout) -// NOTE: Use GetKeyPressed() to allow redefining -// required keys for alternative layouts -typedef enum { - KEY_NULL = 0, // Key: NULL, used for no key pressed - // Alphanumeric keys - KEY_APOSTROPHE = 39, // Key: ' - KEY_COMMA = 44, // Key: , - KEY_MINUS = 45, // Key: - - KEY_PERIOD = 46, // Key: . - KEY_SLASH = 47, // Key: / - KEY_ZERO = 48, // Key: 0 - KEY_ONE = 49, // Key: 1 - KEY_TWO = 50, // Key: 2 - KEY_THREE = 51, // Key: 3 - KEY_FOUR = 52, // Key: 4 - KEY_FIVE = 53, // Key: 5 - KEY_SIX = 54, // Key: 6 - KEY_SEVEN = 55, // Key: 7 - KEY_EIGHT = 56, // Key: 8 - KEY_NINE = 57, // Key: 9 - KEY_SEMICOLON = 59, // Key: ; - KEY_EQUAL = 61, // Key: = - KEY_A = 65, // Key: A | a - KEY_B = 66, // Key: B | b - KEY_C = 67, // Key: C | c - KEY_D = 68, // Key: D | d - KEY_E = 69, // Key: E | e - KEY_F = 70, // Key: F | f - KEY_G = 71, // Key: G | g - KEY_H = 72, // Key: H | h - KEY_I = 73, // Key: I | i - KEY_J = 74, // Key: J | j - KEY_K = 75, // Key: K | k - KEY_L = 76, // Key: L | l - KEY_M = 77, // Key: M | m - KEY_N = 78, // Key: N | n - KEY_O = 79, // Key: O | o - KEY_P = 80, // Key: P | p - KEY_Q = 81, // Key: Q | q - KEY_R = 82, // Key: R | r - KEY_S = 83, // Key: S | s - KEY_T = 84, // Key: T | t - KEY_U = 85, // Key: U | u - KEY_V = 86, // Key: V | v - KEY_W = 87, // Key: W | w - KEY_X = 88, // Key: X | x - KEY_Y = 89, // Key: Y | y - KEY_Z = 90, // Key: Z | z - KEY_LEFT_BRACKET = 91, // Key: [ - KEY_BACKSLASH = 92, // Key: '\' - KEY_RIGHT_BRACKET = 93, // Key: ] - KEY_GRAVE = 96, // Key: ` - // Function keys - KEY_SPACE = 32, // Key: Space - KEY_ESCAPE = 256, // Key: Esc - KEY_ENTER = 257, // Key: Enter - KEY_TAB = 258, // Key: Tab - KEY_BACKSPACE = 259, // Key: Backspace - KEY_INSERT = 260, // Key: Ins - KEY_DELETE = 261, // Key: Del - KEY_RIGHT = 262, // Key: Cursor right - KEY_LEFT = 263, // Key: Cursor left - KEY_DOWN = 264, // Key: Cursor down - KEY_UP = 265, // Key: Cursor up - KEY_PAGE_UP = 266, // Key: Page up - KEY_PAGE_DOWN = 267, // Key: Page down - KEY_HOME = 268, // Key: Home - KEY_END = 269, // Key: End - KEY_CAPS_LOCK = 280, // Key: Caps lock - KEY_SCROLL_LOCK = 281, // Key: Scroll down - KEY_NUM_LOCK = 282, // Key: Num lock - KEY_PRINT_SCREEN = 283, // Key: Print screen - KEY_PAUSE = 284, // Key: Pause - KEY_F1 = 290, // Key: F1 - KEY_F2 = 291, // Key: F2 - KEY_F3 = 292, // Key: F3 - KEY_F4 = 293, // Key: F4 - KEY_F5 = 294, // Key: F5 - KEY_F6 = 295, // Key: F6 - KEY_F7 = 296, // Key: F7 - KEY_F8 = 297, // Key: F8 - KEY_F9 = 298, // Key: F9 - KEY_F10 = 299, // Key: F10 - KEY_F11 = 300, // Key: F11 - KEY_F12 = 301, // Key: F12 - KEY_LEFT_SHIFT = 340, // Key: Shift left - KEY_LEFT_CONTROL = 341, // Key: Control left - KEY_LEFT_ALT = 342, // Key: Alt left - KEY_LEFT_SUPER = 343, // Key: Super left - KEY_RIGHT_SHIFT = 344, // Key: Shift right - KEY_RIGHT_CONTROL = 345, // Key: Control right - KEY_RIGHT_ALT = 346, // Key: Alt right - KEY_RIGHT_SUPER = 347, // Key: Super right - KEY_KB_MENU = 348, // Key: KB menu - // Keypad keys - KEY_KP_0 = 320, // Key: Keypad 0 - KEY_KP_1 = 321, // Key: Keypad 1 - KEY_KP_2 = 322, // Key: Keypad 2 - KEY_KP_3 = 323, // Key: Keypad 3 - KEY_KP_4 = 324, // Key: Keypad 4 - KEY_KP_5 = 325, // Key: Keypad 5 - KEY_KP_6 = 326, // Key: Keypad 6 - KEY_KP_7 = 327, // Key: Keypad 7 - KEY_KP_8 = 328, // Key: Keypad 8 - KEY_KP_9 = 329, // Key: Keypad 9 - KEY_KP_DECIMAL = 330, // Key: Keypad . - KEY_KP_DIVIDE = 331, // Key: Keypad / - KEY_KP_MULTIPLY = 332, // Key: Keypad * - KEY_KP_SUBTRACT = 333, // Key: Keypad - - KEY_KP_ADD = 334, // Key: Keypad + - KEY_KP_ENTER = 335, // Key: Keypad Enter - KEY_KP_EQUAL = 336, // Key: Keypad = - // Android key buttons - KEY_BACK = 4, // Key: Android back button - KEY_MENU = 82, // Key: Android menu button - KEY_VOLUME_UP = 24, // Key: Android volume up button - KEY_VOLUME_DOWN = 25 // Key: Android volume down button -} KeyboardKey; - -// Add backwards compatibility support for deprecated names -#define MOUSE_LEFT_BUTTON MOUSE_BUTTON_LEFT -#define MOUSE_RIGHT_BUTTON MOUSE_BUTTON_RIGHT -#define MOUSE_MIDDLE_BUTTON MOUSE_BUTTON_MIDDLE - -// Mouse buttons -typedef enum { - MOUSE_BUTTON_LEFT = 0, // Mouse button left - MOUSE_BUTTON_RIGHT = 1, // Mouse button right - MOUSE_BUTTON_MIDDLE = 2, // Mouse button middle (pressed wheel) - MOUSE_BUTTON_SIDE = 3, // Mouse button side (advanced mouse device) - MOUSE_BUTTON_EXTRA = 4, // Mouse button extra (advanced mouse device) - MOUSE_BUTTON_FORWARD = 5, // Mouse button forward (advanced mouse device) - MOUSE_BUTTON_BACK = 6, // Mouse button back (advanced mouse device) -} MouseButton; - -// Mouse cursor -typedef enum { - MOUSE_CURSOR_DEFAULT = 0, // Default pointer shape - MOUSE_CURSOR_ARROW = 1, // Arrow shape - MOUSE_CURSOR_IBEAM = 2, // Text writing cursor shape - MOUSE_CURSOR_CROSSHAIR = 3, // Cross shape - MOUSE_CURSOR_POINTING_HAND = 4, // Pointing hand cursor - MOUSE_CURSOR_RESIZE_EW = 5, // Horizontal resize/move arrow shape - MOUSE_CURSOR_RESIZE_NS = 6, // Vertical resize/move arrow shape - MOUSE_CURSOR_RESIZE_NWSE = 7, // Top-left to bottom-right diagonal resize/move arrow shape - MOUSE_CURSOR_RESIZE_NESW = 8, // The top-right to bottom-left diagonal resize/move arrow shape - MOUSE_CURSOR_RESIZE_ALL = 9, // The omnidirectional resize/move cursor shape - MOUSE_CURSOR_NOT_ALLOWED = 10 // The operation-not-allowed shape -} MouseCursor; - -// Gamepad buttons -typedef enum { - GAMEPAD_BUTTON_UNKNOWN = 0, // Unknown button, just for error checking - GAMEPAD_BUTTON_LEFT_FACE_UP, // Gamepad left DPAD up button - GAMEPAD_BUTTON_LEFT_FACE_RIGHT, // Gamepad left DPAD right button - GAMEPAD_BUTTON_LEFT_FACE_DOWN, // Gamepad left DPAD down button - GAMEPAD_BUTTON_LEFT_FACE_LEFT, // Gamepad left DPAD left button - GAMEPAD_BUTTON_RIGHT_FACE_UP, // Gamepad right button up (i.e. PS3: Triangle, Xbox: Y) - GAMEPAD_BUTTON_RIGHT_FACE_RIGHT, // Gamepad right button right (i.e. PS3: Square, Xbox: X) - GAMEPAD_BUTTON_RIGHT_FACE_DOWN, // Gamepad right button down (i.e. PS3: Cross, Xbox: A) - GAMEPAD_BUTTON_RIGHT_FACE_LEFT, // Gamepad right button left (i.e. PS3: Circle, Xbox: B) - GAMEPAD_BUTTON_LEFT_TRIGGER_1, // Gamepad top/back trigger left (first), it could be a trailing button - GAMEPAD_BUTTON_LEFT_TRIGGER_2, // Gamepad top/back trigger left (second), it could be a trailing button - GAMEPAD_BUTTON_RIGHT_TRIGGER_1, // Gamepad top/back trigger right (one), it could be a trailing button - GAMEPAD_BUTTON_RIGHT_TRIGGER_2, // Gamepad top/back trigger right (second), it could be a trailing button - GAMEPAD_BUTTON_MIDDLE_LEFT, // Gamepad center buttons, left one (i.e. PS3: Select) - GAMEPAD_BUTTON_MIDDLE, // Gamepad center buttons, middle one (i.e. PS3: PS, Xbox: XBOX) - GAMEPAD_BUTTON_MIDDLE_RIGHT, // Gamepad center buttons, right one (i.e. PS3: Start) - GAMEPAD_BUTTON_LEFT_THUMB, // Gamepad joystick pressed button left - GAMEPAD_BUTTON_RIGHT_THUMB // Gamepad joystick pressed button right -} GamepadButton; - -// Gamepad axis -typedef enum { - GAMEPAD_AXIS_LEFT_X = 0, // Gamepad left stick X axis - GAMEPAD_AXIS_LEFT_Y = 1, // Gamepad left stick Y axis - GAMEPAD_AXIS_RIGHT_X = 2, // Gamepad right stick X axis - GAMEPAD_AXIS_RIGHT_Y = 3, // Gamepad right stick Y axis - GAMEPAD_AXIS_LEFT_TRIGGER = 4, // Gamepad back trigger left, pressure level: [1..-1] - GAMEPAD_AXIS_RIGHT_TRIGGER = 5 // Gamepad back trigger right, pressure level: [1..-1] -} GamepadAxis; - -// Material map index -typedef enum { - MATERIAL_MAP_ALBEDO = 0, // Albedo material (same as: MATERIAL_MAP_DIFFUSE) - MATERIAL_MAP_METALNESS, // Metalness material (same as: MATERIAL_MAP_SPECULAR) - MATERIAL_MAP_NORMAL, // Normal material - MATERIAL_MAP_ROUGHNESS, // Roughness material - MATERIAL_MAP_OCCLUSION, // Ambient occlusion material - MATERIAL_MAP_EMISSION, // Emission material - MATERIAL_MAP_HEIGHT, // Heightmap material - MATERIAL_MAP_CUBEMAP, // Cubemap material (NOTE: Uses GL_TEXTURE_CUBE_MAP) - MATERIAL_MAP_IRRADIANCE, // Irradiance material (NOTE: Uses GL_TEXTURE_CUBE_MAP) - MATERIAL_MAP_PREFILTER, // Prefilter material (NOTE: Uses GL_TEXTURE_CUBE_MAP) - MATERIAL_MAP_BRDF // Brdf material -} MaterialMapIndex; - -#define MATERIAL_MAP_DIFFUSE MATERIAL_MAP_ALBEDO -#define MATERIAL_MAP_SPECULAR MATERIAL_MAP_METALNESS - -// Shader location index -typedef enum { - SHADER_LOC_VERTEX_POSITION = 0, // Shader location: vertex attribute: position - SHADER_LOC_VERTEX_TEXCOORD01, // Shader location: vertex attribute: texcoord01 - SHADER_LOC_VERTEX_TEXCOORD02, // Shader location: vertex attribute: texcoord02 - SHADER_LOC_VERTEX_NORMAL, // Shader location: vertex attribute: normal - SHADER_LOC_VERTEX_TANGENT, // Shader location: vertex attribute: tangent - SHADER_LOC_VERTEX_COLOR, // Shader location: vertex attribute: color - SHADER_LOC_MATRIX_MVP, // Shader location: matrix uniform: model-view-projection - SHADER_LOC_MATRIX_VIEW, // Shader location: matrix uniform: view (camera transform) - SHADER_LOC_MATRIX_PROJECTION, // Shader location: matrix uniform: projection - SHADER_LOC_MATRIX_MODEL, // Shader location: matrix uniform: model (transform) - SHADER_LOC_MATRIX_NORMAL, // Shader location: matrix uniform: normal - SHADER_LOC_VECTOR_VIEW, // Shader location: vector uniform: view - SHADER_LOC_COLOR_DIFFUSE, // Shader location: vector uniform: diffuse color - SHADER_LOC_COLOR_SPECULAR, // Shader location: vector uniform: specular color - SHADER_LOC_COLOR_AMBIENT, // Shader location: vector uniform: ambient color - SHADER_LOC_MAP_ALBEDO, // Shader location: sampler2d texture: albedo (same as: SHADER_LOC_MAP_DIFFUSE) - SHADER_LOC_MAP_METALNESS, // Shader location: sampler2d texture: metalness (same as: SHADER_LOC_MAP_SPECULAR) - SHADER_LOC_MAP_NORMAL, // Shader location: sampler2d texture: normal - SHADER_LOC_MAP_ROUGHNESS, // Shader location: sampler2d texture: roughness - SHADER_LOC_MAP_OCCLUSION, // Shader location: sampler2d texture: occlusion - SHADER_LOC_MAP_EMISSION, // Shader location: sampler2d texture: emission - SHADER_LOC_MAP_HEIGHT, // Shader location: sampler2d texture: height - SHADER_LOC_MAP_CUBEMAP, // Shader location: samplerCube texture: cubemap - SHADER_LOC_MAP_IRRADIANCE, // Shader location: samplerCube texture: irradiance - SHADER_LOC_MAP_PREFILTER, // Shader location: samplerCube texture: prefilter - SHADER_LOC_MAP_BRDF // Shader location: sampler2d texture: brdf -} ShaderLocationIndex; - -#define SHADER_LOC_MAP_DIFFUSE SHADER_LOC_MAP_ALBEDO -#define SHADER_LOC_MAP_SPECULAR SHADER_LOC_MAP_METALNESS - -// Shader uniform data type -typedef enum { - SHADER_UNIFORM_FLOAT = 0, // Shader uniform type: float - SHADER_UNIFORM_VEC2, // Shader uniform type: vec2 (2 float) - SHADER_UNIFORM_VEC3, // Shader uniform type: vec3 (3 float) - SHADER_UNIFORM_VEC4, // Shader uniform type: vec4 (4 float) - SHADER_UNIFORM_INT, // Shader uniform type: int - SHADER_UNIFORM_IVEC2, // Shader uniform type: ivec2 (2 int) - SHADER_UNIFORM_IVEC3, // Shader uniform type: ivec3 (3 int) - SHADER_UNIFORM_IVEC4, // Shader uniform type: ivec4 (4 int) - SHADER_UNIFORM_SAMPLER2D // Shader uniform type: sampler2d -} ShaderUniformDataType; - -// Shader attribute data types -typedef enum { - SHADER_ATTRIB_FLOAT = 0, // Shader attribute type: float - SHADER_ATTRIB_VEC2, // Shader attribute type: vec2 (2 float) - SHADER_ATTRIB_VEC3, // Shader attribute type: vec3 (3 float) - SHADER_ATTRIB_VEC4 // Shader attribute type: vec4 (4 float) -} ShaderAttributeDataType; - -// Pixel formats -// NOTE: Support depends on OpenGL version and platform -typedef enum { - PIXELFORMAT_UNCOMPRESSED_GRAYSCALE = 1, // 8 bit per pixel (no alpha) - PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA, // 8*2 bpp (2 channels) - PIXELFORMAT_UNCOMPRESSED_R5G6B5, // 16 bpp - PIXELFORMAT_UNCOMPRESSED_R8G8B8, // 24 bpp - PIXELFORMAT_UNCOMPRESSED_R5G5B5A1, // 16 bpp (1 bit alpha) - PIXELFORMAT_UNCOMPRESSED_R4G4B4A4, // 16 bpp (4 bit alpha) - PIXELFORMAT_UNCOMPRESSED_R8G8B8A8, // 32 bpp - PIXELFORMAT_UNCOMPRESSED_R32, // 32 bpp (1 channel - float) - PIXELFORMAT_UNCOMPRESSED_R32G32B32, // 32*3 bpp (3 channels - float) - PIXELFORMAT_UNCOMPRESSED_R32G32B32A32, // 32*4 bpp (4 channels - float) - PIXELFORMAT_UNCOMPRESSED_R16, // 16 bpp (1 channel - half float) - PIXELFORMAT_UNCOMPRESSED_R16G16B16, // 16*3 bpp (3 channels - half float) - PIXELFORMAT_UNCOMPRESSED_R16G16B16A16, // 16*4 bpp (4 channels - half float) - PIXELFORMAT_COMPRESSED_DXT1_RGB, // 4 bpp (no alpha) - PIXELFORMAT_COMPRESSED_DXT1_RGBA, // 4 bpp (1 bit alpha) - PIXELFORMAT_COMPRESSED_DXT3_RGBA, // 8 bpp - PIXELFORMAT_COMPRESSED_DXT5_RGBA, // 8 bpp - PIXELFORMAT_COMPRESSED_ETC1_RGB, // 4 bpp - PIXELFORMAT_COMPRESSED_ETC2_RGB, // 4 bpp - PIXELFORMAT_COMPRESSED_ETC2_EAC_RGBA, // 8 bpp - PIXELFORMAT_COMPRESSED_PVRT_RGB, // 4 bpp - PIXELFORMAT_COMPRESSED_PVRT_RGBA, // 4 bpp - PIXELFORMAT_COMPRESSED_ASTC_4x4_RGBA, // 8 bpp - PIXELFORMAT_COMPRESSED_ASTC_8x8_RGBA // 2 bpp -} PixelFormat; - -// Texture parameters: filter mode -// NOTE 1: Filtering considers mipmaps if available in the texture -// NOTE 2: Filter is accordingly set for minification and magnification -typedef enum { - TEXTURE_FILTER_POINT = 0, // No filter, just pixel approximation - TEXTURE_FILTER_BILINEAR, // Linear filtering - TEXTURE_FILTER_TRILINEAR, // Trilinear filtering (linear with mipmaps) - TEXTURE_FILTER_ANISOTROPIC_4X, // Anisotropic filtering 4x - TEXTURE_FILTER_ANISOTROPIC_8X, // Anisotropic filtering 8x - TEXTURE_FILTER_ANISOTROPIC_16X, // Anisotropic filtering 16x -} TextureFilter; - -// Texture parameters: wrap mode -typedef enum { - TEXTURE_WRAP_REPEAT = 0, // Repeats texture in tiled mode - TEXTURE_WRAP_CLAMP, // Clamps texture to edge pixel in tiled mode - TEXTURE_WRAP_MIRROR_REPEAT, // Mirrors and repeats the texture in tiled mode - TEXTURE_WRAP_MIRROR_CLAMP // Mirrors and clamps to border the texture in tiled mode -} TextureWrap; - -// Cubemap layouts -typedef enum { - CUBEMAP_LAYOUT_AUTO_DETECT = 0, // Automatically detect layout type - CUBEMAP_LAYOUT_LINE_VERTICAL, // Layout is defined by a vertical line with faces - CUBEMAP_LAYOUT_LINE_HORIZONTAL, // Layout is defined by a horizontal line with faces - CUBEMAP_LAYOUT_CROSS_THREE_BY_FOUR, // Layout is defined by a 3x4 cross with cubemap faces - CUBEMAP_LAYOUT_CROSS_FOUR_BY_THREE, // Layout is defined by a 4x3 cross with cubemap faces - CUBEMAP_LAYOUT_PANORAMA // Layout is defined by a panorama image (equirrectangular map) -} CubemapLayout; - -// Font type, defines generation method -typedef enum { - FONT_DEFAULT = 0, // Default font generation, anti-aliased - FONT_BITMAP, // Bitmap font generation, no anti-aliasing - FONT_SDF // SDF font generation, requires external shader -} FontType; - -// Color blending modes (pre-defined) -typedef enum { - BLEND_ALPHA = 0, // Blend textures considering alpha (default) - BLEND_ADDITIVE, // Blend textures adding colors - BLEND_MULTIPLIED, // Blend textures multiplying colors - BLEND_ADD_COLORS, // Blend textures adding colors (alternative) - BLEND_SUBTRACT_COLORS, // Blend textures subtracting colors (alternative) - BLEND_ALPHA_PREMULTIPLY, // Blend premultiplied textures considering alpha - BLEND_CUSTOM, // Blend textures using custom src/dst factors (use rlSetBlendFactors()) - BLEND_CUSTOM_SEPARATE // Blend textures using custom rgb/alpha separate src/dst factors (use rlSetBlendFactorsSeparate()) -} BlendMode; - -// Gesture -// NOTE: Provided as bit-wise flags to enable only desired gestures -typedef enum { - GESTURE_NONE = 0, // No gesture - GESTURE_TAP = 1, // Tap gesture - GESTURE_DOUBLETAP = 2, // Double tap gesture - GESTURE_HOLD = 4, // Hold gesture - GESTURE_DRAG = 8, // Drag gesture - GESTURE_SWIPE_RIGHT = 16, // Swipe right gesture - GESTURE_SWIPE_LEFT = 32, // Swipe left gesture - GESTURE_SWIPE_UP = 64, // Swipe up gesture - GESTURE_SWIPE_DOWN = 128, // Swipe down gesture - GESTURE_PINCH_IN = 256, // Pinch in gesture - GESTURE_PINCH_OUT = 512 // Pinch out gesture -} Gesture; - -// Camera system modes -typedef enum { - CAMERA_CUSTOM = 0, // Custom camera - CAMERA_FREE, // Free camera - CAMERA_ORBITAL, // Orbital camera - CAMERA_FIRST_PERSON, // First person camera - CAMERA_THIRD_PERSON // Third person camera -} CameraMode; - -// Camera projection -typedef enum { - CAMERA_PERSPECTIVE = 0, // Perspective projection - CAMERA_ORTHOGRAPHIC // Orthographic projection -} CameraProjection; - -// N-patch layout -typedef enum { - NPATCH_NINE_PATCH = 0, // Npatch layout: 3x3 tiles - NPATCH_THREE_PATCH_VERTICAL, // Npatch layout: 1x3 tiles - NPATCH_THREE_PATCH_HORIZONTAL // Npatch layout: 3x1 tiles -} NPatchLayout; - -// Callbacks to hook some internal functions -// WARNING: These callbacks are intended for advance users -typedef void (*TraceLogCallback)(int logLevel, const char *text, va_list args); // Logging: Redirect trace log messages -typedef unsigned char *(*LoadFileDataCallback)(const char *fileName, int *dataSize); // FileIO: Load binary data -typedef bool (*SaveFileDataCallback)(const char *fileName, void *data, int dataSize); // FileIO: Save binary data -typedef char *(*LoadFileTextCallback)(const char *fileName); // FileIO: Load text data -typedef bool (*SaveFileTextCallback)(const char *fileName, char *text); // FileIO: Save text data - -//------------------------------------------------------------------------------------ -// Global Variables Definition -//------------------------------------------------------------------------------------ -// It's lonely here... - -//------------------------------------------------------------------------------------ -// Window and Graphics Device Functions (Module: core) -//------------------------------------------------------------------------------------ - -#if defined(__cplusplus) -extern "C" { // Prevents name mangling of functions -#endif - -// Window-related functions -RLAPI void InitWindow(int width, int height, const char *title); // Initialize window and OpenGL context -RLAPI void CloseWindow(void); // Close window and unload OpenGL context -RLAPI bool WindowShouldClose(void); // Check if application should close (KEY_ESCAPE pressed or windows close icon clicked) -RLAPI bool IsWindowReady(void); // Check if window has been initialized successfully -RLAPI bool IsWindowFullscreen(void); // Check if window is currently fullscreen -RLAPI bool IsWindowHidden(void); // Check if window is currently hidden (only PLATFORM_DESKTOP) -RLAPI bool IsWindowMinimized(void); // Check if window is currently minimized (only PLATFORM_DESKTOP) -RLAPI bool IsWindowMaximized(void); // Check if window is currently maximized (only PLATFORM_DESKTOP) -RLAPI bool IsWindowFocused(void); // Check if window is currently focused (only PLATFORM_DESKTOP) -RLAPI bool IsWindowResized(void); // Check if window has been resized last frame -RLAPI bool IsWindowState(unsigned int flag); // Check if one specific window flag is enabled -RLAPI void SetWindowState(unsigned int flags); // Set window configuration state using flags (only PLATFORM_DESKTOP) -RLAPI void ClearWindowState(unsigned int flags); // Clear window configuration state flags -RLAPI void ToggleFullscreen(void); // Toggle window state: fullscreen/windowed (only PLATFORM_DESKTOP) -RLAPI void ToggleBorderlessWindowed(void); // Toggle window state: borderless windowed (only PLATFORM_DESKTOP) -RLAPI void MaximizeWindow(void); // Set window state: maximized, if resizable (only PLATFORM_DESKTOP) -RLAPI void MinimizeWindow(void); // Set window state: minimized, if resizable (only PLATFORM_DESKTOP) -RLAPI void RestoreWindow(void); // Set window state: not minimized/maximized (only PLATFORM_DESKTOP) -RLAPI void SetWindowIcon(Image image); // Set icon for window (single image, RGBA 32bit, only PLATFORM_DESKTOP) -RLAPI void SetWindowIcons(Image *images, int count); // Set icon for window (multiple images, RGBA 32bit, only PLATFORM_DESKTOP) -RLAPI void SetWindowTitle(const char *title); // Set title for window (only PLATFORM_DESKTOP and PLATFORM_WEB) -RLAPI void SetWindowPosition(int x, int y); // Set window position on screen (only PLATFORM_DESKTOP) -RLAPI void SetWindowMonitor(int monitor); // Set monitor for the current window -RLAPI void SetWindowMinSize(int width, int height); // Set window minimum dimensions (for FLAG_WINDOW_RESIZABLE) -RLAPI void SetWindowMaxSize(int width, int height); // Set window maximum dimensions (for FLAG_WINDOW_RESIZABLE) -RLAPI void SetWindowSize(int width, int height); // Set window dimensions -RLAPI void SetWindowOpacity(float opacity); // Set window opacity [0.0f..1.0f] (only PLATFORM_DESKTOP) -RLAPI void SetWindowFocused(void); // Set window focused (only PLATFORM_DESKTOP) -RLAPI void *GetWindowHandle(void); // Get native window handle -RLAPI int GetScreenWidth(void); // Get current screen width -RLAPI int GetScreenHeight(void); // Get current screen height -RLAPI int GetRenderWidth(void); // Get current render width (it considers HiDPI) -RLAPI int GetRenderHeight(void); // Get current render height (it considers HiDPI) -RLAPI int GetMonitorCount(void); // Get number of connected monitors -RLAPI int GetCurrentMonitor(void); // Get current connected monitor -RLAPI Vector2 GetMonitorPosition(int monitor); // Get specified monitor position -RLAPI int GetMonitorWidth(int monitor); // Get specified monitor width (current video mode used by monitor) -RLAPI int GetMonitorHeight(int monitor); // Get specified monitor height (current video mode used by monitor) -RLAPI int GetMonitorPhysicalWidth(int monitor); // Get specified monitor physical width in millimetres -RLAPI int GetMonitorPhysicalHeight(int monitor); // Get specified monitor physical height in millimetres -RLAPI int GetMonitorRefreshRate(int monitor); // Get specified monitor refresh rate -RLAPI Vector2 GetWindowPosition(void); // Get window position XY on monitor -RLAPI Vector2 GetWindowScaleDPI(void); // Get window scale DPI factor -RLAPI const char *GetMonitorName(int monitor); // Get the human-readable, UTF-8 encoded name of the specified monitor -RLAPI void SetClipboardText(const char *text); // Set clipboard text content -RLAPI const char *GetClipboardText(void); // Get clipboard text content -RLAPI void EnableEventWaiting(void); // Enable waiting for events on EndDrawing(), no automatic event polling -RLAPI void DisableEventWaiting(void); // Disable waiting for events on EndDrawing(), automatic events polling - -// Cursor-related functions -RLAPI void ShowCursor(void); // Shows cursor -RLAPI void HideCursor(void); // Hides cursor -RLAPI bool IsCursorHidden(void); // Check if cursor is not visible -RLAPI void EnableCursor(void); // Enables cursor (unlock cursor) -RLAPI void DisableCursor(void); // Disables cursor (lock cursor) -RLAPI bool IsCursorOnScreen(void); // Check if cursor is on the screen - -// Drawing-related functions -RLAPI void ClearBackground(Color color); // Set background color (framebuffer clear color) -RLAPI void BeginDrawing(void); // Setup canvas (framebuffer) to start drawing -RLAPI void EndDrawing(void); // End canvas drawing and swap buffers (double buffering) -RLAPI void BeginMode2D(Camera2D camera); // Begin 2D mode with custom camera (2D) -RLAPI void EndMode2D(void); // Ends 2D mode with custom camera -RLAPI void BeginMode3D(Camera3D camera); // Begin 3D mode with custom camera (3D) -RLAPI void EndMode3D(void); // Ends 3D mode and returns to default 2D orthographic mode -RLAPI void BeginTextureMode(RenderTexture2D target); // Begin drawing to render texture -RLAPI void EndTextureMode(void); // Ends drawing to render texture -RLAPI void BeginShaderMode(Shader shader); // Begin custom shader drawing -RLAPI void EndShaderMode(void); // End custom shader drawing (use default shader) -RLAPI void BeginBlendMode(int mode); // Begin blending mode (alpha, additive, multiplied, subtract, custom) -RLAPI void EndBlendMode(void); // End blending mode (reset to default: alpha blending) -RLAPI void BeginScissorMode(int x, int y, int width, int height); // Begin scissor mode (define screen area for following drawing) -RLAPI void EndScissorMode(void); // End scissor mode -RLAPI void BeginVrStereoMode(VrStereoConfig config); // Begin stereo rendering (requires VR simulator) -RLAPI void EndVrStereoMode(void); // End stereo rendering (requires VR simulator) - -// VR stereo config functions for VR simulator -RLAPI VrStereoConfig LoadVrStereoConfig(VrDeviceInfo device); // Load VR stereo config for VR simulator device parameters -RLAPI void UnloadVrStereoConfig(VrStereoConfig config); // Unload VR stereo config - -// Shader management functions -// NOTE: Shader functionality is not available on OpenGL 1.1 -RLAPI Shader LoadShader(const char *vsFileName, const char *fsFileName); // Load shader from files and bind default locations -RLAPI Shader LoadShaderFromMemory(const char *vsCode, const char *fsCode); // Load shader from code strings and bind default locations -RLAPI bool IsShaderReady(Shader shader); // Check if a shader is ready -RLAPI int GetShaderLocation(Shader shader, const char *uniformName); // Get shader uniform location -RLAPI int GetShaderLocationAttrib(Shader shader, const char *attribName); // Get shader attribute location -RLAPI void SetShaderValue(Shader shader, int locIndex, const void *value, int uniformType); // Set shader uniform value -RLAPI void SetShaderValueV(Shader shader, int locIndex, const void *value, int uniformType, int count); // Set shader uniform value vector -RLAPI void SetShaderValueMatrix(Shader shader, int locIndex, Matrix mat); // Set shader uniform value (matrix 4x4) -RLAPI void SetShaderValueTexture(Shader shader, int locIndex, Texture2D texture); // Set shader uniform value for texture (sampler2d) -RLAPI void UnloadShader(Shader shader); // Unload shader from GPU memory (VRAM) - -// Screen-space-related functions -RLAPI Ray GetMouseRay(Vector2 mousePosition, Camera camera); // Get a ray trace from mouse position -RLAPI Matrix GetCameraMatrix(Camera camera); // Get camera transform matrix (view matrix) -RLAPI Matrix GetCameraMatrix2D(Camera2D camera); // Get camera 2d transform matrix -RLAPI Vector2 GetWorldToScreen(Vector3 position, Camera camera); // Get the screen space position for a 3d world space position -RLAPI Vector2 GetScreenToWorld2D(Vector2 position, Camera2D camera); // Get the world space position for a 2d camera screen space position -RLAPI Vector2 GetWorldToScreenEx(Vector3 position, Camera camera, int width, int height); // Get size position for a 3d world space position -RLAPI Vector2 GetWorldToScreen2D(Vector2 position, Camera2D camera); // Get the screen space position for a 2d camera world space position - -// Timing-related functions -RLAPI void SetTargetFPS(int fps); // Set target FPS (maximum) -RLAPI float GetFrameTime(void); // Get time in seconds for last frame drawn (delta time) -RLAPI double GetTime(void); // Get elapsed time in seconds since InitWindow() -RLAPI int GetFPS(void); // Get current FPS - -// Custom frame control functions -// NOTE: Those functions are intended for advance users that want full control over the frame processing -// By default EndDrawing() does this job: draws everything + SwapScreenBuffer() + manage frame timing + PollInputEvents() -// To avoid that behaviour and control frame processes manually, enable in config.h: SUPPORT_CUSTOM_FRAME_CONTROL -RLAPI void SwapScreenBuffer(void); // Swap back buffer with front buffer (screen drawing) -RLAPI void PollInputEvents(void); // Register all input events -RLAPI void WaitTime(double seconds); // Wait for some time (halt program execution) - -// Random values generation functions -RLAPI void SetRandomSeed(unsigned int seed); // Set the seed for the random number generator -RLAPI int GetRandomValue(int min, int max); // Get a random value between min and max (both included) -RLAPI int *LoadRandomSequence(unsigned int count, int min, int max); // Load random values sequence, no values repeated -RLAPI void UnloadRandomSequence(int *sequence); // Unload random values sequence - -// Misc. functions -RLAPI void TakeScreenshot(const char *fileName); // Takes a screenshot of current screen (filename extension defines format) -RLAPI void SetConfigFlags(unsigned int flags); // Setup init configuration flags (view FLAGS) -RLAPI void OpenURL(const char *url); // Open URL with default system browser (if available) - -// NOTE: Following functions implemented in module [utils] -//------------------------------------------------------------------ -RLAPI void TraceLog(int logLevel, const char *text, ...); // Show trace log messages (LOG_DEBUG, LOG_INFO, LOG_WARNING, LOG_ERROR...) -RLAPI void SetTraceLogLevel(int logLevel); // Set the current threshold (minimum) log level -RLAPI void *MemAlloc(unsigned int size); // Internal memory allocator -RLAPI void *MemRealloc(void *ptr, unsigned int size); // Internal memory reallocator -RLAPI void MemFree(void *ptr); // Internal memory free - -// Set custom callbacks -// WARNING: Callbacks setup is intended for advance users -RLAPI void SetTraceLogCallback(TraceLogCallback callback); // Set custom trace log -RLAPI void SetLoadFileDataCallback(LoadFileDataCallback callback); // Set custom file binary data loader -RLAPI void SetSaveFileDataCallback(SaveFileDataCallback callback); // Set custom file binary data saver -RLAPI void SetLoadFileTextCallback(LoadFileTextCallback callback); // Set custom file text data loader -RLAPI void SetSaveFileTextCallback(SaveFileTextCallback callback); // Set custom file text data saver - -// Files management functions -RLAPI unsigned char *LoadFileData(const char *fileName, int *dataSize); // Load file data as byte array (read) -RLAPI void UnloadFileData(unsigned char *data); // Unload file data allocated by LoadFileData() -RLAPI bool SaveFileData(const char *fileName, void *data, int dataSize); // Save data to file from byte array (write), returns true on success -RLAPI bool ExportDataAsCode(const unsigned char *data, int dataSize, const char *fileName); // Export data to code (.h), returns true on success -RLAPI char *LoadFileText(const char *fileName); // Load text data from file (read), returns a '\0' terminated string -RLAPI void UnloadFileText(char *text); // Unload file text data allocated by LoadFileText() -RLAPI bool SaveFileText(const char *fileName, char *text); // Save text data to file (write), string must be '\0' terminated, returns true on success -//------------------------------------------------------------------ - -// File system functions -RLAPI bool FileExists(const char *fileName); // Check if file exists -RLAPI bool DirectoryExists(const char *dirPath); // Check if a directory path exists -RLAPI bool IsFileExtension(const char *fileName, const char *ext); // Check file extension (including point: .png, .wav) -RLAPI int GetFileLength(const char *fileName); // Get file length in bytes (NOTE: GetFileSize() conflicts with windows.h) -RLAPI const char *GetFileExtension(const char *fileName); // Get pointer to extension for a filename string (includes dot: '.png') -RLAPI const char *GetFileName(const char *filePath); // Get pointer to filename for a path string -RLAPI const char *GetFileNameWithoutExt(const char *filePath); // Get filename string without extension (uses static string) -RLAPI const char *GetDirectoryPath(const char *filePath); // Get full path for a given fileName with path (uses static string) -RLAPI const char *GetPrevDirectoryPath(const char *dirPath); // Get previous directory path for a given path (uses static string) -RLAPI const char *GetWorkingDirectory(void); // Get current working directory (uses static string) -RLAPI const char *GetApplicationDirectory(void); // Get the directory of the running application (uses static string) -RLAPI bool ChangeDirectory(const char *dir); // Change working directory, return true on success -RLAPI bool IsPathFile(const char *path); // Check if a given path is a file or a directory -RLAPI FilePathList LoadDirectoryFiles(const char *dirPath); // Load directory filepaths -RLAPI FilePathList LoadDirectoryFilesEx(const char *basePath, const char *filter, bool scanSubdirs); // Load directory filepaths with extension filtering and recursive directory scan -RLAPI void UnloadDirectoryFiles(FilePathList files); // Unload filepaths -RLAPI bool IsFileDropped(void); // Check if a file has been dropped into window -RLAPI FilePathList LoadDroppedFiles(void); // Load dropped filepaths -RLAPI void UnloadDroppedFiles(FilePathList files); // Unload dropped filepaths -RLAPI long GetFileModTime(const char *fileName); // Get file modification time (last write time) - -// Compression/Encoding functionality -RLAPI unsigned char *CompressData(const unsigned char *data, int dataSize, int *compDataSize); // Compress data (DEFLATE algorithm), memory must be MemFree() -RLAPI unsigned char *DecompressData(const unsigned char *compData, int compDataSize, int *dataSize); // Decompress data (DEFLATE algorithm), memory must be MemFree() -RLAPI char *EncodeDataBase64(const unsigned char *data, int dataSize, int *outputSize); // Encode data to Base64 string, memory must be MemFree() -RLAPI unsigned char *DecodeDataBase64(const unsigned char *data, int *outputSize); // Decode Base64 string data, memory must be MemFree() - -// Automation events functionality -RLAPI AutomationEventList LoadAutomationEventList(const char *fileName); // Load automation events list from file, NULL for empty list, capacity = MAX_AUTOMATION_EVENTS -RLAPI void UnloadAutomationEventList(AutomationEventList *list); // Unload automation events list from file -RLAPI bool ExportAutomationEventList(AutomationEventList list, const char *fileName); // Export automation events list as text file -RLAPI void SetAutomationEventList(AutomationEventList *list); // Set automation event list to record to -RLAPI void SetAutomationEventBaseFrame(int frame); // Set automation event internal base frame to start recording -RLAPI void StartAutomationEventRecording(void); // Start recording automation events (AutomationEventList must be set) -RLAPI void StopAutomationEventRecording(void); // Stop recording automation events -RLAPI void PlayAutomationEvent(AutomationEvent event); // Play a recorded automation event - -//------------------------------------------------------------------------------------ -// Input Handling Functions (Module: core) -//------------------------------------------------------------------------------------ - -// Input-related functions: keyboard -RLAPI bool IsKeyPressed(int key); // Check if a key has been pressed once -RLAPI bool IsKeyPressedRepeat(int key); // Check if a key has been pressed again (Only PLATFORM_DESKTOP) -RLAPI bool IsKeyDown(int key); // Check if a key is being pressed -RLAPI bool IsKeyReleased(int key); // Check if a key has been released once -RLAPI bool IsKeyUp(int key); // Check if a key is NOT being pressed -RLAPI int GetKeyPressed(void); // Get key pressed (keycode), call it multiple times for keys queued, returns 0 when the queue is empty -RLAPI int GetCharPressed(void); // Get char pressed (unicode), call it multiple times for chars queued, returns 0 when the queue is empty -RLAPI void SetExitKey(int key); // Set a custom key to exit program (default is ESC) - -// Input-related functions: gamepads -RLAPI bool IsGamepadAvailable(int gamepad); // Check if a gamepad is available -RLAPI const char *GetGamepadName(int gamepad); // Get gamepad internal name id -RLAPI bool IsGamepadButtonPressed(int gamepad, int button); // Check if a gamepad button has been pressed once -RLAPI bool IsGamepadButtonDown(int gamepad, int button); // Check if a gamepad button is being pressed -RLAPI bool IsGamepadButtonReleased(int gamepad, int button); // Check if a gamepad button has been released once -RLAPI bool IsGamepadButtonUp(int gamepad, int button); // Check if a gamepad button is NOT being pressed -RLAPI int GetGamepadButtonPressed(void); // Get the last gamepad button pressed -RLAPI int GetGamepadAxisCount(int gamepad); // Get gamepad axis count for a gamepad -RLAPI float GetGamepadAxisMovement(int gamepad, int axis); // Get axis movement value for a gamepad axis -RLAPI int SetGamepadMappings(const char *mappings); // Set internal gamepad mappings (SDL_GameControllerDB) - -// Input-related functions: mouse -RLAPI bool IsMouseButtonPressed(int button); // Check if a mouse button has been pressed once -RLAPI bool IsMouseButtonDown(int button); // Check if a mouse button is being pressed -RLAPI bool IsMouseButtonReleased(int button); // Check if a mouse button has been released once -RLAPI bool IsMouseButtonUp(int button); // Check if a mouse button is NOT being pressed -RLAPI int GetMouseX(void); // Get mouse position X -RLAPI int GetMouseY(void); // Get mouse position Y -RLAPI Vector2 GetMousePosition(void); // Get mouse position XY -RLAPI Vector2 GetMouseDelta(void); // Get mouse delta between frames -RLAPI void SetMousePosition(int x, int y); // Set mouse position XY -RLAPI void SetMouseOffset(int offsetX, int offsetY); // Set mouse offset -RLAPI void SetMouseScale(float scaleX, float scaleY); // Set mouse scaling -RLAPI float GetMouseWheelMove(void); // Get mouse wheel movement for X or Y, whichever is larger -RLAPI Vector2 GetMouseWheelMoveV(void); // Get mouse wheel movement for both X and Y -RLAPI void SetMouseCursor(int cursor); // Set mouse cursor - -// Input-related functions: touch -RLAPI int GetTouchX(void); // Get touch position X for touch point 0 (relative to screen size) -RLAPI int GetTouchY(void); // Get touch position Y for touch point 0 (relative to screen size) -RLAPI Vector2 GetTouchPosition(int index); // Get touch position XY for a touch point index (relative to screen size) -RLAPI int GetTouchPointId(int index); // Get touch point identifier for given index -RLAPI int GetTouchPointCount(void); // Get number of touch points - -//------------------------------------------------------------------------------------ -// Gestures and Touch Handling Functions (Module: rgestures) -//------------------------------------------------------------------------------------ -RLAPI void SetGesturesEnabled(unsigned int flags); // Enable a set of gestures using flags -RLAPI bool IsGestureDetected(unsigned int gesture); // Check if a gesture have been detected -RLAPI int GetGestureDetected(void); // Get latest detected gesture -RLAPI float GetGestureHoldDuration(void); // Get gesture hold time in milliseconds -RLAPI Vector2 GetGestureDragVector(void); // Get gesture drag vector -RLAPI float GetGestureDragAngle(void); // Get gesture drag angle -RLAPI Vector2 GetGesturePinchVector(void); // Get gesture pinch delta -RLAPI float GetGesturePinchAngle(void); // Get gesture pinch angle - -//------------------------------------------------------------------------------------ -// Camera System Functions (Module: rcamera) -//------------------------------------------------------------------------------------ -RLAPI void UpdateCamera(Camera *camera, int mode); // Update camera position for selected mode -RLAPI void UpdateCameraPro(Camera *camera, Vector3 movement, Vector3 rotation, float zoom); // Update camera movement/rotation - -//------------------------------------------------------------------------------------ -// Basic Shapes Drawing Functions (Module: shapes) -//------------------------------------------------------------------------------------ -// Set texture and rectangle to be used on shapes drawing -// NOTE: It can be useful when using basic shapes and one single font, -// defining a font char white rectangle would allow drawing everything in a single draw call -RLAPI void SetShapesTexture(Texture2D texture, Rectangle source); // Set texture and rectangle to be used on shapes drawing - -// Basic shapes drawing functions -RLAPI void DrawPixel(int posX, int posY, Color color); // Draw a pixel -RLAPI void DrawPixelV(Vector2 position, Color color); // Draw a pixel (Vector version) -RLAPI void DrawLine(int startPosX, int startPosY, int endPosX, int endPosY, Color color); // Draw a line -RLAPI void DrawLineV(Vector2 startPos, Vector2 endPos, Color color); // Draw a line (using gl lines) -RLAPI void DrawLineEx(Vector2 startPos, Vector2 endPos, float thick, Color color); // Draw a line (using triangles/quads) -RLAPI void DrawLineStrip(Vector2 *points, int pointCount, Color color); // Draw lines sequence (using gl lines) -RLAPI void DrawLineBezier(Vector2 startPos, Vector2 endPos, float thick, Color color); // Draw line segment cubic-bezier in-out interpolation -RLAPI void DrawCircle(int centerX, int centerY, float radius, Color color); // Draw a color-filled circle -RLAPI void DrawCircleSector(Vector2 center, float radius, float startAngle, float endAngle, int segments, Color color); // Draw a piece of a circle -RLAPI void DrawCircleSectorLines(Vector2 center, float radius, float startAngle, float endAngle, int segments, Color color); // Draw circle sector outline -RLAPI void DrawCircleGradient(int centerX, int centerY, float radius, Color color1, Color color2); // Draw a gradient-filled circle -RLAPI void DrawCircleV(Vector2 center, float radius, Color color); // Draw a color-filled circle (Vector version) -RLAPI void DrawCircleLines(int centerX, int centerY, float radius, Color color); // Draw circle outline -RLAPI void DrawCircleLinesV(Vector2 center, float radius, Color color); // Draw circle outline (Vector version) -RLAPI void DrawEllipse(int centerX, int centerY, float radiusH, float radiusV, Color color); // Draw ellipse -RLAPI void DrawEllipseLines(int centerX, int centerY, float radiusH, float radiusV, Color color); // Draw ellipse outline -RLAPI void DrawRing(Vector2 center, float innerRadius, float outerRadius, float startAngle, float endAngle, int segments, Color color); // Draw ring -RLAPI void DrawRingLines(Vector2 center, float innerRadius, float outerRadius, float startAngle, float endAngle, int segments, Color color); // Draw ring outline -RLAPI void DrawRectangle(int posX, int posY, int width, int height, Color color); // Draw a color-filled rectangle -RLAPI void DrawRectangleV(Vector2 position, Vector2 size, Color color); // Draw a color-filled rectangle (Vector version) -RLAPI void DrawRectangleRec(Rectangle rec, Color color); // Draw a color-filled rectangle -RLAPI void DrawRectanglePro(Rectangle rec, Vector2 origin, float rotation, Color color); // Draw a color-filled rectangle with pro parameters -RLAPI void DrawRectangleGradientV(int posX, int posY, int width, int height, Color color1, Color color2);// Draw a vertical-gradient-filled rectangle -RLAPI void DrawRectangleGradientH(int posX, int posY, int width, int height, Color color1, Color color2);// Draw a horizontal-gradient-filled rectangle -RLAPI void DrawRectangleGradientEx(Rectangle rec, Color col1, Color col2, Color col3, Color col4); // Draw a gradient-filled rectangle with custom vertex colors -RLAPI void DrawRectangleLines(int posX, int posY, int width, int height, Color color); // Draw rectangle outline -RLAPI void DrawRectangleLinesEx(Rectangle rec, float lineThick, Color color); // Draw rectangle outline with extended parameters -RLAPI void DrawRectangleRounded(Rectangle rec, float roundness, int segments, Color color); // Draw rectangle with rounded edges -RLAPI void DrawRectangleRoundedLines(Rectangle rec, float roundness, int segments, float lineThick, Color color); // Draw rectangle with rounded edges outline -RLAPI void DrawTriangle(Vector2 v1, Vector2 v2, Vector2 v3, Color color); // Draw a color-filled triangle (vertex in counter-clockwise order!) -RLAPI void DrawTriangleLines(Vector2 v1, Vector2 v2, Vector2 v3, Color color); // Draw triangle outline (vertex in counter-clockwise order!) -RLAPI void DrawTriangleFan(Vector2 *points, int pointCount, Color color); // Draw a triangle fan defined by points (first vertex is the center) -RLAPI void DrawTriangleStrip(Vector2 *points, int pointCount, Color color); // Draw a triangle strip defined by points -RLAPI void DrawPoly(Vector2 center, int sides, float radius, float rotation, Color color); // Draw a regular polygon (Vector version) -RLAPI void DrawPolyLines(Vector2 center, int sides, float radius, float rotation, Color color); // Draw a polygon outline of n sides -RLAPI void DrawPolyLinesEx(Vector2 center, int sides, float radius, float rotation, float lineThick, Color color); // Draw a polygon outline of n sides with extended parameters - -// Splines drawing functions -RLAPI void DrawSplineLinear(Vector2 *points, int pointCount, float thick, Color color); // Draw spline: Linear, minimum 2 points -RLAPI void DrawSplineBasis(Vector2 *points, int pointCount, float thick, Color color); // Draw spline: B-Spline, minimum 4 points -RLAPI void DrawSplineCatmullRom(Vector2 *points, int pointCount, float thick, Color color); // Draw spline: Catmull-Rom, minimum 4 points -RLAPI void DrawSplineBezierQuadratic(Vector2 *points, int pointCount, float thick, Color color); // Draw spline: Quadratic Bezier, minimum 3 points (1 control point): [p1, c2, p3, c4...] -RLAPI void DrawSplineBezierCubic(Vector2 *points, int pointCount, float thick, Color color); // Draw spline: Cubic Bezier, minimum 4 points (2 control points): [p1, c2, c3, p4, c5, c6...] -RLAPI void DrawSplineSegmentLinear(Vector2 p1, Vector2 p2, float thick, Color color); // Draw spline segment: Linear, 2 points -RLAPI void DrawSplineSegmentBasis(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float thick, Color color); // Draw spline segment: B-Spline, 4 points -RLAPI void DrawSplineSegmentCatmullRom(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float thick, Color color); // Draw spline segment: Catmull-Rom, 4 points -RLAPI void DrawSplineSegmentBezierQuadratic(Vector2 p1, Vector2 c2, Vector2 p3, float thick, Color color); // Draw spline segment: Quadratic Bezier, 2 points, 1 control point -RLAPI void DrawSplineSegmentBezierCubic(Vector2 p1, Vector2 c2, Vector2 c3, Vector2 p4, float thick, Color color); // Draw spline segment: Cubic Bezier, 2 points, 2 control points - -// Spline segment point evaluation functions, for a given t [0.0f .. 1.0f] -RLAPI Vector2 GetSplinePointLinear(Vector2 startPos, Vector2 endPos, float t); // Get (evaluate) spline point: Linear -RLAPI Vector2 GetSplinePointBasis(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float t); // Get (evaluate) spline point: B-Spline -RLAPI Vector2 GetSplinePointCatmullRom(Vector2 p1, Vector2 p2, Vector2 p3, Vector2 p4, float t); // Get (evaluate) spline point: Catmull-Rom -RLAPI Vector2 GetSplinePointBezierQuad(Vector2 p1, Vector2 c2, Vector2 p3, float t); // Get (evaluate) spline point: Quadratic Bezier -RLAPI Vector2 GetSplinePointBezierCubic(Vector2 p1, Vector2 c2, Vector2 c3, Vector2 p4, float t); // Get (evaluate) spline point: Cubic Bezier - -// Basic shapes collision detection functions -RLAPI bool CheckCollisionRecs(Rectangle rec1, Rectangle rec2); // Check collision between two rectangles -RLAPI bool CheckCollisionCircles(Vector2 center1, float radius1, Vector2 center2, float radius2); // Check collision between two circles -RLAPI bool CheckCollisionCircleRec(Vector2 center, float radius, Rectangle rec); // Check collision between circle and rectangle -RLAPI bool CheckCollisionPointRec(Vector2 point, Rectangle rec); // Check if point is inside rectangle -RLAPI bool CheckCollisionPointCircle(Vector2 point, Vector2 center, float radius); // Check if point is inside circle -RLAPI bool CheckCollisionPointTriangle(Vector2 point, Vector2 p1, Vector2 p2, Vector2 p3); // Check if point is inside a triangle -RLAPI bool CheckCollisionPointPoly(Vector2 point, Vector2 *points, int pointCount); // Check if point is within a polygon described by array of vertices -RLAPI bool CheckCollisionLines(Vector2 startPos1, Vector2 endPos1, Vector2 startPos2, Vector2 endPos2, Vector2 *collisionPoint); // Check the collision between two lines defined by two points each, returns collision point by reference -RLAPI bool CheckCollisionPointLine(Vector2 point, Vector2 p1, Vector2 p2, int threshold); // Check if point belongs to line created between two points [p1] and [p2] with defined margin in pixels [threshold] -RLAPI Rectangle GetCollisionRec(Rectangle rec1, Rectangle rec2); // Get collision rectangle for two rectangles collision - -//------------------------------------------------------------------------------------ -// Texture Loading and Drawing Functions (Module: textures) -//------------------------------------------------------------------------------------ - -// Image loading functions -// NOTE: These functions do not require GPU access -RLAPI Image LoadImage(const char *fileName); // Load image from file into CPU memory (RAM) -RLAPI Image LoadImageRaw(const char *fileName, int width, int height, int format, int headerSize); // Load image from RAW file data -RLAPI Image LoadImageSvg(const char *fileNameOrString, int width, int height); // Load image from SVG file data or string with specified size -RLAPI Image LoadImageAnim(const char *fileName, int *frames); // Load image sequence from file (frames appended to image.data) -RLAPI Image LoadImageFromMemory(const char *fileType, const unsigned char *fileData, int dataSize); // Load image from memory buffer, fileType refers to extension: i.e. '.png' -RLAPI Image LoadImageFromTexture(Texture2D texture); // Load image from GPU texture data -RLAPI Image LoadImageFromScreen(void); // Load image from screen buffer and (screenshot) -RLAPI bool IsImageReady(Image image); // Check if an image is ready -RLAPI void UnloadImage(Image image); // Unload image from CPU memory (RAM) -RLAPI bool ExportImage(Image image, const char *fileName); // Export image data to file, returns true on success -RLAPI unsigned char *ExportImageToMemory(Image image, const char *fileType, int *fileSize); // Export image to memory buffer -RLAPI bool ExportImageAsCode(Image image, const char *fileName); // Export image as code file defining an array of bytes, returns true on success - -// Image generation functions -RLAPI Image GenImageColor(int width, int height, Color color); // Generate image: plain color -RLAPI Image GenImageGradientLinear(int width, int height, int direction, Color start, Color end); // Generate image: linear gradient, direction in degrees [0..360], 0=Vertical gradient -RLAPI Image GenImageGradientRadial(int width, int height, float density, Color inner, Color outer); // Generate image: radial gradient -RLAPI Image GenImageGradientSquare(int width, int height, float density, Color inner, Color outer); // Generate image: square gradient -RLAPI Image GenImageChecked(int width, int height, int checksX, int checksY, Color col1, Color col2); // Generate image: checked -RLAPI Image GenImageWhiteNoise(int width, int height, float factor); // Generate image: white noise -RLAPI Image GenImagePerlinNoise(int width, int height, int offsetX, int offsetY, float scale); // Generate image: perlin noise -RLAPI Image GenImageCellular(int width, int height, int tileSize); // Generate image: cellular algorithm, bigger tileSize means bigger cells -RLAPI Image GenImageText(int width, int height, const char *text); // Generate image: grayscale image from text data - -// Image manipulation functions -RLAPI Image ImageCopy(Image image); // Create an image duplicate (useful for transformations) -RLAPI Image ImageFromImage(Image image, Rectangle rec); // Create an image from another image piece -RLAPI Image ImageText(const char *text, int fontSize, Color color); // Create an image from text (default font) -RLAPI Image ImageTextEx(Font font, const char *text, float fontSize, float spacing, Color tint); // Create an image from text (custom sprite font) -RLAPI void ImageFormat(Image *image, int newFormat); // Convert image data to desired format -RLAPI void ImageToPOT(Image *image, Color fill); // Convert image to POT (power-of-two) -RLAPI void ImageCrop(Image *image, Rectangle crop); // Crop an image to a defined rectangle -RLAPI void ImageAlphaCrop(Image *image, float threshold); // Crop image depending on alpha value -RLAPI void ImageAlphaClear(Image *image, Color color, float threshold); // Clear alpha channel to desired color -RLAPI void ImageAlphaMask(Image *image, Image alphaMask); // Apply alpha mask to image -RLAPI void ImageAlphaPremultiply(Image *image); // Premultiply alpha channel -RLAPI void ImageBlurGaussian(Image *image, int blurSize); // Apply Gaussian blur using a box blur approximation -RLAPI void ImageResize(Image *image, int newWidth, int newHeight); // Resize image (Bicubic scaling algorithm) -RLAPI void ImageResizeNN(Image *image, int newWidth,int newHeight); // Resize image (Nearest-Neighbor scaling algorithm) -RLAPI void ImageResizeCanvas(Image *image, int newWidth, int newHeight, int offsetX, int offsetY, Color fill); // Resize canvas and fill with color -RLAPI void ImageMipmaps(Image *image); // Compute all mipmap levels for a provided image -RLAPI void ImageDither(Image *image, int rBpp, int gBpp, int bBpp, int aBpp); // Dither image data to 16bpp or lower (Floyd-Steinberg dithering) -RLAPI void ImageFlipVertical(Image *image); // Flip image vertically -RLAPI void ImageFlipHorizontal(Image *image); // Flip image horizontally -RLAPI void ImageRotate(Image *image, int degrees); // Rotate image by input angle in degrees (-359 to 359) -RLAPI void ImageRotateCW(Image *image); // Rotate image clockwise 90deg -RLAPI void ImageRotateCCW(Image *image); // Rotate image counter-clockwise 90deg -RLAPI void ImageColorTint(Image *image, Color color); // Modify image color: tint -RLAPI void ImageColorInvert(Image *image); // Modify image color: invert -RLAPI void ImageColorGrayscale(Image *image); // Modify image color: grayscale -RLAPI void ImageColorContrast(Image *image, float contrast); // Modify image color: contrast (-100 to 100) -RLAPI void ImageColorBrightness(Image *image, int brightness); // Modify image color: brightness (-255 to 255) -RLAPI void ImageColorReplace(Image *image, Color color, Color replace); // Modify image color: replace color -RLAPI Color *LoadImageColors(Image image); // Load color data from image as a Color array (RGBA - 32bit) -RLAPI Color *LoadImagePalette(Image image, int maxPaletteSize, int *colorCount); // Load colors palette from image as a Color array (RGBA - 32bit) -RLAPI void UnloadImageColors(Color *colors); // Unload color data loaded with LoadImageColors() -RLAPI void UnloadImagePalette(Color *colors); // Unload colors palette loaded with LoadImagePalette() -RLAPI Rectangle GetImageAlphaBorder(Image image, float threshold); // Get image alpha border rectangle -RLAPI Color GetImageColor(Image image, int x, int y); // Get image pixel color at (x, y) position - -// Image drawing functions -// NOTE: Image software-rendering functions (CPU) -RLAPI void ImageClearBackground(Image *dst, Color color); // Clear image background with given color -RLAPI void ImageDrawPixel(Image *dst, int posX, int posY, Color color); // Draw pixel within an image -RLAPI void ImageDrawPixelV(Image *dst, Vector2 position, Color color); // Draw pixel within an image (Vector version) -RLAPI void ImageDrawLine(Image *dst, int startPosX, int startPosY, int endPosX, int endPosY, Color color); // Draw line within an image -RLAPI void ImageDrawLineV(Image *dst, Vector2 start, Vector2 end, Color color); // Draw line within an image (Vector version) -RLAPI void ImageDrawCircle(Image *dst, int centerX, int centerY, int radius, Color color); // Draw a filled circle within an image -RLAPI void ImageDrawCircleV(Image *dst, Vector2 center, int radius, Color color); // Draw a filled circle within an image (Vector version) -RLAPI void ImageDrawCircleLines(Image *dst, int centerX, int centerY, int radius, Color color); // Draw circle outline within an image -RLAPI void ImageDrawCircleLinesV(Image *dst, Vector2 center, int radius, Color color); // Draw circle outline within an image (Vector version) -RLAPI void ImageDrawRectangle(Image *dst, int posX, int posY, int width, int height, Color color); // Draw rectangle within an image -RLAPI void ImageDrawRectangleV(Image *dst, Vector2 position, Vector2 size, Color color); // Draw rectangle within an image (Vector version) -RLAPI void ImageDrawRectangleRec(Image *dst, Rectangle rec, Color color); // Draw rectangle within an image -RLAPI void ImageDrawRectangleLines(Image *dst, Rectangle rec, int thick, Color color); // Draw rectangle lines within an image -RLAPI void ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dstRec, Color tint); // Draw a source image within a destination image (tint applied to source) -RLAPI void ImageDrawText(Image *dst, const char *text, int posX, int posY, int fontSize, Color color); // Draw text (using default font) within an image (destination) -RLAPI void ImageDrawTextEx(Image *dst, Font font, const char *text, Vector2 position, float fontSize, float spacing, Color tint); // Draw text (custom sprite font) within an image (destination) - -// Texture loading functions -// NOTE: These functions require GPU access -RLAPI Texture2D LoadTexture(const char *fileName); // Load texture from file into GPU memory (VRAM) -RLAPI Texture2D LoadTextureFromImage(Image image); // Load texture from image data -RLAPI TextureCubemap LoadTextureCubemap(Image image, int layout); // Load cubemap from image, multiple image cubemap layouts supported -RLAPI RenderTexture2D LoadRenderTexture(int width, int height); // Load texture for rendering (framebuffer) -RLAPI bool IsTextureReady(Texture2D texture); // Check if a texture is ready -RLAPI void UnloadTexture(Texture2D texture); // Unload texture from GPU memory (VRAM) -RLAPI bool IsRenderTextureReady(RenderTexture2D target); // Check if a render texture is ready -RLAPI void UnloadRenderTexture(RenderTexture2D target); // Unload render texture from GPU memory (VRAM) -RLAPI void UpdateTexture(Texture2D texture, const void *pixels); // Update GPU texture with new data -RLAPI void UpdateTextureRec(Texture2D texture, Rectangle rec, const void *pixels); // Update GPU texture rectangle with new data - -// Texture configuration functions -RLAPI void GenTextureMipmaps(Texture2D *texture); // Generate GPU mipmaps for a texture -RLAPI void SetTextureFilter(Texture2D texture, int filter); // Set texture scaling filter mode -RLAPI void SetTextureWrap(Texture2D texture, int wrap); // Set texture wrapping mode - -// Texture drawing functions -RLAPI void DrawTexture(Texture2D texture, int posX, int posY, Color tint); // Draw a Texture2D -RLAPI void DrawTextureV(Texture2D texture, Vector2 position, Color tint); // Draw a Texture2D with position defined as Vector2 -RLAPI void DrawTextureEx(Texture2D texture, Vector2 position, float rotation, float scale, Color tint); // Draw a Texture2D with extended parameters -RLAPI void DrawTextureRec(Texture2D texture, Rectangle source, Vector2 position, Color tint); // Draw a part of a texture defined by a rectangle -RLAPI void DrawTexturePro(Texture2D texture, Rectangle source, Rectangle dest, Vector2 origin, float rotation, Color tint); // Draw a part of a texture defined by a rectangle with 'pro' parameters -RLAPI void DrawTextureNPatch(Texture2D texture, NPatchInfo nPatchInfo, Rectangle dest, Vector2 origin, float rotation, Color tint); // Draws a texture (or part of it) that stretches or shrinks nicely - -// Color/pixel related functions -RLAPI Color Fade(Color color, float alpha); // Get color with alpha applied, alpha goes from 0.0f to 1.0f -RLAPI int ColorToInt(Color color); // Get hexadecimal value for a Color -RLAPI Vector4 ColorNormalize(Color color); // Get Color normalized as float [0..1] -RLAPI Color ColorFromNormalized(Vector4 normalized); // Get Color from normalized values [0..1] -RLAPI Vector3 ColorToHSV(Color color); // Get HSV values for a Color, hue [0..360], saturation/value [0..1] -RLAPI Color ColorFromHSV(float hue, float saturation, float value); // Get a Color from HSV values, hue [0..360], saturation/value [0..1] -RLAPI Color ColorTint(Color color, Color tint); // Get color multiplied with another color -RLAPI Color ColorBrightness(Color color, float factor); // Get color with brightness correction, brightness factor goes from -1.0f to 1.0f -RLAPI Color ColorContrast(Color color, float contrast); // Get color with contrast correction, contrast values between -1.0f and 1.0f -RLAPI Color ColorAlpha(Color color, float alpha); // Get color with alpha applied, alpha goes from 0.0f to 1.0f -RLAPI Color ColorAlphaBlend(Color dst, Color src, Color tint); // Get src alpha-blended into dst color with tint -RLAPI Color GetColor(unsigned int hexValue); // Get Color structure from hexadecimal value -RLAPI Color GetPixelColor(void *srcPtr, int format); // Get Color from a source pixel pointer of certain format -RLAPI void SetPixelColor(void *dstPtr, Color color, int format); // Set color formatted into destination pixel pointer -RLAPI int GetPixelDataSize(int width, int height, int format); // Get pixel data size in bytes for certain format - -//------------------------------------------------------------------------------------ -// Font Loading and Text Drawing Functions (Module: text) -//------------------------------------------------------------------------------------ - -// Font loading/unloading functions -RLAPI Font GetFontDefault(void); // Get the default Font -RLAPI Font LoadFont(const char *fileName); // Load font from file into GPU memory (VRAM) -RLAPI Font LoadFontEx(const char *fileName, int fontSize, int *codepoints, int codepointCount); // Load font from file with extended parameters, use NULL for codepoints and 0 for codepointCount to load the default character set -RLAPI Font LoadFontFromImage(Image image, Color key, int firstChar); // Load font from Image (XNA style) -RLAPI Font LoadFontFromMemory(const char *fileType, const unsigned char *fileData, int dataSize, int fontSize, int *codepoints, int codepointCount); // Load font from memory buffer, fileType refers to extension: i.e. '.ttf' -RLAPI bool IsFontReady(Font font); // Check if a font is ready -RLAPI GlyphInfo *LoadFontData(const unsigned char *fileData, int dataSize, int fontSize, int *codepoints, int codepointCount, int type); // Load font data for further use -RLAPI Image GenImageFontAtlas(const GlyphInfo *glyphs, Rectangle **glyphRecs, int glyphCount, int fontSize, int padding, int packMethod); // Generate image font atlas using chars info -RLAPI void UnloadFontData(GlyphInfo *glyphs, int glyphCount); // Unload font chars info data (RAM) -RLAPI void UnloadFont(Font font); // Unload font from GPU memory (VRAM) -RLAPI bool ExportFontAsCode(Font font, const char *fileName); // Export font as code file, returns true on success - -// Text drawing functions -RLAPI void DrawFPS(int posX, int posY); // Draw current FPS -RLAPI void DrawText(const char *text, int posX, int posY, int fontSize, Color color); // Draw text (using default font) -RLAPI void DrawTextEx(Font font, const char *text, Vector2 position, float fontSize, float spacing, Color tint); // Draw text using font and additional parameters -RLAPI void DrawTextPro(Font font, const char *text, Vector2 position, Vector2 origin, float rotation, float fontSize, float spacing, Color tint); // Draw text using Font and pro parameters (rotation) -RLAPI void DrawTextCodepoint(Font font, int codepoint, Vector2 position, float fontSize, Color tint); // Draw one character (codepoint) -RLAPI void DrawTextCodepoints(Font font, const int *codepoints, int codepointCount, Vector2 position, float fontSize, float spacing, Color tint); // Draw multiple character (codepoint) - -// Text font info functions -RLAPI void SetTextLineSpacing(int spacing); // Set vertical line spacing when drawing with line-breaks -RLAPI int MeasureText(const char *text, int fontSize); // Measure string width for default font -RLAPI Vector2 MeasureTextEx(Font font, const char *text, float fontSize, float spacing); // Measure string size for Font -RLAPI int GetGlyphIndex(Font font, int codepoint); // Get glyph index position in font for a codepoint (unicode character), fallback to '?' if not found -RLAPI GlyphInfo GetGlyphInfo(Font font, int codepoint); // Get glyph font info data for a codepoint (unicode character), fallback to '?' if not found -RLAPI Rectangle GetGlyphAtlasRec(Font font, int codepoint); // Get glyph rectangle in font atlas for a codepoint (unicode character), fallback to '?' if not found - -// Text codepoints management functions (unicode characters) -RLAPI char *LoadUTF8(const int *codepoints, int length); // Load UTF-8 text encoded from codepoints array -RLAPI void UnloadUTF8(char *text); // Unload UTF-8 text encoded from codepoints array -RLAPI int *LoadCodepoints(const char *text, int *count); // Load all codepoints from a UTF-8 text string, codepoints count returned by parameter -RLAPI void UnloadCodepoints(int *codepoints); // Unload codepoints data from memory -RLAPI int GetCodepointCount(const char *text); // Get total number of codepoints in a UTF-8 encoded string -RLAPI int GetCodepoint(const char *text, int *codepointSize); // Get next codepoint in a UTF-8 encoded string, 0x3f('?') is returned on failure -RLAPI int GetCodepointNext(const char *text, int *codepointSize); // Get next codepoint in a UTF-8 encoded string, 0x3f('?') is returned on failure -RLAPI int GetCodepointPrevious(const char *text, int *codepointSize); // Get previous codepoint in a UTF-8 encoded string, 0x3f('?') is returned on failure -RLAPI const char *CodepointToUTF8(int codepoint, int *utf8Size); // Encode one codepoint into UTF-8 byte array (array length returned as parameter) - -// Text strings management functions (no UTF-8 strings, only byte chars) -// NOTE: Some strings allocate memory internally for returned strings, just be careful! -RLAPI int TextCopy(char *dst, const char *src); // Copy one string to another, returns bytes copied -RLAPI bool TextIsEqual(const char *text1, const char *text2); // Check if two text string are equal -RLAPI unsigned int TextLength(const char *text); // Get text length, checks for '\0' ending -RLAPI const char *TextFormat(const char *text, ...); // Text formatting with variables (sprintf() style) -RLAPI const char *TextSubtext(const char *text, int position, int length); // Get a piece of a text string -RLAPI char *TextReplace(char *text, const char *replace, const char *by); // Replace text string (WARNING: memory must be freed!) -RLAPI char *TextInsert(const char *text, const char *insert, int position); // Insert text in a position (WARNING: memory must be freed!) -RLAPI const char *TextJoin(const char **textList, int count, const char *delimiter); // Join text strings with delimiter -RLAPI const char **TextSplit(const char *text, char delimiter, int *count); // Split text into multiple strings -RLAPI void TextAppend(char *text, const char *append, int *position); // Append text at specific position and move cursor! -RLAPI int TextFindIndex(const char *text, const char *find); // Find first text occurrence within a string -RLAPI const char *TextToUpper(const char *text); // Get upper case version of provided string -RLAPI const char *TextToLower(const char *text); // Get lower case version of provided string -RLAPI const char *TextToPascal(const char *text); // Get Pascal case notation version of provided string -RLAPI int TextToInteger(const char *text); // Get integer value from text (negative values not supported) - -//------------------------------------------------------------------------------------ -// Basic 3d Shapes Drawing Functions (Module: models) -//------------------------------------------------------------------------------------ - -// Basic geometric 3D shapes drawing functions -RLAPI void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color); // Draw a line in 3D world space -RLAPI void DrawPoint3D(Vector3 position, Color color); // Draw a point in 3D space, actually a small line -RLAPI void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color); // Draw a circle in 3D world space -RLAPI void DrawTriangle3D(Vector3 v1, Vector3 v2, Vector3 v3, Color color); // Draw a color-filled triangle (vertex in counter-clockwise order!) -RLAPI void DrawTriangleStrip3D(Vector3 *points, int pointCount, Color color); // Draw a triangle strip defined by points -RLAPI void DrawCube(Vector3 position, float width, float height, float length, Color color); // Draw cube -RLAPI void DrawCubeV(Vector3 position, Vector3 size, Color color); // Draw cube (Vector version) -RLAPI void DrawCubeWires(Vector3 position, float width, float height, float length, Color color); // Draw cube wires -RLAPI void DrawCubeWiresV(Vector3 position, Vector3 size, Color color); // Draw cube wires (Vector version) -RLAPI void DrawSphere(Vector3 centerPos, float radius, Color color); // Draw sphere -RLAPI void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color); // Draw sphere with extended parameters -RLAPI void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color); // Draw sphere wires -RLAPI void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int slices, Color color); // Draw a cylinder/cone -RLAPI void DrawCylinderEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color); // Draw a cylinder with base at startPos and top at endPos -RLAPI void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int slices, Color color); // Draw a cylinder/cone wires -RLAPI void DrawCylinderWiresEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color); // Draw a cylinder wires with base at startPos and top at endPos -RLAPI void DrawCapsule(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color); // Draw a capsule with the center of its sphere caps at startPos and endPos -RLAPI void DrawCapsuleWires(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color); // Draw capsule wireframe with the center of its sphere caps at startPos and endPos -RLAPI void DrawPlane(Vector3 centerPos, Vector2 size, Color color); // Draw a plane XZ -RLAPI void DrawRay(Ray ray, Color color); // Draw a ray line -RLAPI void DrawGrid(int slices, float spacing); // Draw a grid (centered at (0, 0, 0)) - -//------------------------------------------------------------------------------------ -// Model 3d Loading and Drawing Functions (Module: models) -//------------------------------------------------------------------------------------ - -// Model management functions -RLAPI Model LoadModel(const char *fileName); // Load model from files (meshes and materials) -RLAPI Model LoadModelFromMesh(Mesh mesh); // Load model from generated mesh (default material) -RLAPI bool IsModelReady(Model model); // Check if a model is ready -RLAPI void UnloadModel(Model model); // Unload model (including meshes) from memory (RAM and/or VRAM) -RLAPI BoundingBox GetModelBoundingBox(Model model); // Compute model bounding box limits (considers all meshes) - -// Model drawing functions -RLAPI void DrawModel(Model model, Vector3 position, float scale, Color tint); // Draw a model (with texture if set) -RLAPI void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint); // Draw a model with extended parameters -RLAPI void DrawModelWires(Model model, Vector3 position, float scale, Color tint); // Draw a model wires (with texture if set) -RLAPI void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint); // Draw a model wires (with texture if set) with extended parameters -RLAPI void DrawBoundingBox(BoundingBox box, Color color); // Draw bounding box (wires) -RLAPI void DrawBillboard(Camera camera, Texture2D texture, Vector3 position, float size, Color tint); // Draw a billboard texture -RLAPI void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector2 size, Color tint); // Draw a billboard texture defined by source -RLAPI void DrawBillboardPro(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector3 up, Vector2 size, Vector2 origin, float rotation, Color tint); // Draw a billboard texture defined by source and rotation - -// Mesh management functions -RLAPI void UploadMesh(Mesh *mesh, bool dynamic); // Upload mesh vertex data in GPU and provide VAO/VBO ids -RLAPI void UpdateMeshBuffer(Mesh mesh, int index, const void *data, int dataSize, int offset); // Update mesh vertex data in GPU for a specific buffer index -RLAPI void UnloadMesh(Mesh mesh); // Unload mesh data from CPU and GPU -RLAPI void DrawMesh(Mesh mesh, Material material, Matrix transform); // Draw a 3d mesh with material and transform -RLAPI void DrawMeshInstanced(Mesh mesh, Material material, const Matrix *transforms, int instances); // Draw multiple mesh instances with material and different transforms -RLAPI bool ExportMesh(Mesh mesh, const char *fileName); // Export mesh data to file, returns true on success -RLAPI BoundingBox GetMeshBoundingBox(Mesh mesh); // Compute mesh bounding box limits -RLAPI void GenMeshTangents(Mesh *mesh); // Compute mesh tangents - -// Mesh generation functions -RLAPI Mesh GenMeshPoly(int sides, float radius); // Generate polygonal mesh -RLAPI Mesh GenMeshPlane(float width, float length, int resX, int resZ); // Generate plane mesh (with subdivisions) -RLAPI Mesh GenMeshCube(float width, float height, float length); // Generate cuboid mesh -RLAPI Mesh GenMeshSphere(float radius, int rings, int slices); // Generate sphere mesh (standard sphere) -RLAPI Mesh GenMeshHemiSphere(float radius, int rings, int slices); // Generate half-sphere mesh (no bottom cap) -RLAPI Mesh GenMeshCylinder(float radius, float height, int slices); // Generate cylinder mesh -RLAPI Mesh GenMeshCone(float radius, float height, int slices); // Generate cone/pyramid mesh -RLAPI Mesh GenMeshTorus(float radius, float size, int radSeg, int sides); // Generate torus mesh -RLAPI Mesh GenMeshKnot(float radius, float size, int radSeg, int sides); // Generate trefoil knot mesh -RLAPI Mesh GenMeshHeightmap(Image heightmap, Vector3 size); // Generate heightmap mesh from image data -RLAPI Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize); // Generate cubes-based map mesh from image data - -// Material loading/unloading functions -RLAPI Material *LoadMaterials(const char *fileName, int *materialCount); // Load materials from model file -RLAPI Material LoadMaterialDefault(void); // Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps) -RLAPI bool IsMaterialReady(Material material); // Check if a material is ready -RLAPI void UnloadMaterial(Material material); // Unload material from GPU memory (VRAM) -RLAPI void SetMaterialTexture(Material *material, int mapType, Texture2D texture); // Set texture for a material map type (MATERIAL_MAP_DIFFUSE, MATERIAL_MAP_SPECULAR...) -RLAPI void SetModelMeshMaterial(Model *model, int meshId, int materialId); // Set material for a mesh - -// Model animations loading/unloading functions -RLAPI ModelAnimation *LoadModelAnimations(const char *fileName, int *animCount); // Load model animations from file -RLAPI void UpdateModelAnimation(Model model, ModelAnimation anim, int frame); // Update model animation pose -RLAPI void UnloadModelAnimation(ModelAnimation anim); // Unload animation data -RLAPI void UnloadModelAnimations(ModelAnimation *animations, int animCount); // Unload animation array data -RLAPI bool IsModelAnimationValid(Model model, ModelAnimation anim); // Check model animation skeleton match - -// Collision detection functions -RLAPI bool CheckCollisionSpheres(Vector3 center1, float radius1, Vector3 center2, float radius2); // Check collision between two spheres -RLAPI bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2); // Check collision between two bounding boxes -RLAPI bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius); // Check collision between box and sphere -RLAPI RayCollision GetRayCollisionSphere(Ray ray, Vector3 center, float radius); // Get collision info between ray and sphere -RLAPI RayCollision GetRayCollisionBox(Ray ray, BoundingBox box); // Get collision info between ray and box -RLAPI RayCollision GetRayCollisionMesh(Ray ray, Mesh mesh, Matrix transform); // Get collision info between ray and mesh -RLAPI RayCollision GetRayCollisionTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3); // Get collision info between ray and triangle -RLAPI RayCollision GetRayCollisionQuad(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 p4); // Get collision info between ray and quad - -//------------------------------------------------------------------------------------ -// Audio Loading and Playing Functions (Module: audio) -//------------------------------------------------------------------------------------ -typedef void (*AudioCallback)(void *bufferData, unsigned int frames); - -// Audio device management functions -RLAPI void InitAudioDevice(void); // Initialize audio device and context -RLAPI void CloseAudioDevice(void); // Close the audio device and context -RLAPI bool IsAudioDeviceReady(void); // Check if audio device has been initialized successfully -RLAPI void SetMasterVolume(float volume); // Set master volume (listener) -RLAPI float GetMasterVolume(void); // Get master volume (listener) - -// Wave/Sound loading/unloading functions -RLAPI Wave LoadWave(const char *fileName); // Load wave data from file -RLAPI Wave LoadWaveFromMemory(const char *fileType, const unsigned char *fileData, int dataSize); // Load wave from memory buffer, fileType refers to extension: i.e. '.wav' -RLAPI bool IsWaveReady(Wave wave); // Checks if wave data is ready -RLAPI Sound LoadSound(const char *fileName); // Load sound from file -RLAPI Sound LoadSoundFromWave(Wave wave); // Load sound from wave data -RLAPI Sound LoadSoundAlias(Sound source); // Create a new sound that shares the same sample data as the source sound, does not own the sound data -RLAPI bool IsSoundReady(Sound sound); // Checks if a sound is ready -RLAPI void UpdateSound(Sound sound, const void *data, int sampleCount); // Update sound buffer with new data -RLAPI void UnloadWave(Wave wave); // Unload wave data -RLAPI void UnloadSound(Sound sound); // Unload sound -RLAPI void UnloadSoundAlias(Sound alias); // Unload a sound alias (does not deallocate sample data) -RLAPI bool ExportWave(Wave wave, const char *fileName); // Export wave data to file, returns true on success -RLAPI bool ExportWaveAsCode(Wave wave, const char *fileName); // Export wave sample data to code (.h), returns true on success - -// Wave/Sound management functions -RLAPI void PlaySound(Sound sound); // Play a sound -RLAPI void StopSound(Sound sound); // Stop playing a sound -RLAPI void PauseSound(Sound sound); // Pause a sound -RLAPI void ResumeSound(Sound sound); // Resume a paused sound -RLAPI bool IsSoundPlaying(Sound sound); // Check if a sound is currently playing -RLAPI void SetSoundVolume(Sound sound, float volume); // Set volume for a sound (1.0 is max level) -RLAPI void SetSoundPitch(Sound sound, float pitch); // Set pitch for a sound (1.0 is base level) -RLAPI void SetSoundPan(Sound sound, float pan); // Set pan for a sound (0.5 is center) -RLAPI Wave WaveCopy(Wave wave); // Copy a wave to a new wave -RLAPI void WaveCrop(Wave *wave, int initSample, int finalSample); // Crop a wave to defined samples range -RLAPI void WaveFormat(Wave *wave, int sampleRate, int sampleSize, int channels); // Convert wave data to desired format -RLAPI float *LoadWaveSamples(Wave wave); // Load samples data from wave as a 32bit float data array -RLAPI void UnloadWaveSamples(float *samples); // Unload samples data loaded with LoadWaveSamples() - -// Music management functions -RLAPI Music LoadMusicStream(const char *fileName); // Load music stream from file -RLAPI Music LoadMusicStreamFromMemory(const char *fileType, const unsigned char *data, int dataSize); // Load music stream from data -RLAPI bool IsMusicReady(Music music); // Checks if a music stream is ready -RLAPI void UnloadMusicStream(Music music); // Unload music stream -RLAPI void PlayMusicStream(Music music); // Start music playing -RLAPI bool IsMusicStreamPlaying(Music music); // Check if music is playing -RLAPI void UpdateMusicStream(Music music); // Updates buffers for music streaming -RLAPI void StopMusicStream(Music music); // Stop music playing -RLAPI void PauseMusicStream(Music music); // Pause music playing -RLAPI void ResumeMusicStream(Music music); // Resume playing paused music -RLAPI void SeekMusicStream(Music music, float position); // Seek music to a position (in seconds) -RLAPI void SetMusicVolume(Music music, float volume); // Set volume for music (1.0 is max level) -RLAPI void SetMusicPitch(Music music, float pitch); // Set pitch for a music (1.0 is base level) -RLAPI void SetMusicPan(Music music, float pan); // Set pan for a music (0.5 is center) -RLAPI float GetMusicTimeLength(Music music); // Get music time length (in seconds) -RLAPI float GetMusicTimePlayed(Music music); // Get current music time played (in seconds) - -// AudioStream management functions -RLAPI AudioStream LoadAudioStream(unsigned int sampleRate, unsigned int sampleSize, unsigned int channels); // Load audio stream (to stream raw audio pcm data) -RLAPI bool IsAudioStreamReady(AudioStream stream); // Checks if an audio stream is ready -RLAPI void UnloadAudioStream(AudioStream stream); // Unload audio stream and free memory -RLAPI void UpdateAudioStream(AudioStream stream, const void *data, int frameCount); // Update audio stream buffers with data -RLAPI bool IsAudioStreamProcessed(AudioStream stream); // Check if any audio stream buffers requires refill -RLAPI void PlayAudioStream(AudioStream stream); // Play audio stream -RLAPI void PauseAudioStream(AudioStream stream); // Pause audio stream -RLAPI void ResumeAudioStream(AudioStream stream); // Resume audio stream -RLAPI bool IsAudioStreamPlaying(AudioStream stream); // Check if audio stream is playing -RLAPI void StopAudioStream(AudioStream stream); // Stop audio stream -RLAPI void SetAudioStreamVolume(AudioStream stream, float volume); // Set volume for audio stream (1.0 is max level) -RLAPI void SetAudioStreamPitch(AudioStream stream, float pitch); // Set pitch for audio stream (1.0 is base level) -RLAPI void SetAudioStreamPan(AudioStream stream, float pan); // Set pan for audio stream (0.5 is centered) -RLAPI void SetAudioStreamBufferSizeDefault(int size); // Default size for new audio streams -RLAPI void SetAudioStreamCallback(AudioStream stream, AudioCallback callback); // Audio thread callback to request new data - -RLAPI void AttachAudioStreamProcessor(AudioStream stream, AudioCallback processor); // Attach audio stream processor to stream, receives the samples as s -RLAPI void DetachAudioStreamProcessor(AudioStream stream, AudioCallback processor); // Detach audio stream processor from stream - -RLAPI void AttachAudioMixedProcessor(AudioCallback processor); // Attach audio stream processor to the entire audio pipeline, receives the samples as s -RLAPI void DetachAudioMixedProcessor(AudioCallback processor); // Detach audio stream processor from the entire audio pipeline - -#if defined(__cplusplus) -} -#endif - -#endif // RAYLIB_H diff --git a/wasm_include/raymath.h b/wasm_include/raymath.h deleted file mode 100644 index ff60170..0000000 --- a/wasm_include/raymath.h +++ /dev/null @@ -1,2190 +0,0 @@ -/********************************************************************************************** -* -* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions -* -* CONVENTIONS: -* - Matrix structure is defined as row-major (memory layout) but parameters naming AND all -* math operations performed by the library consider the structure as it was column-major -* It is like transposed versions of the matrices are used for all the maths -* It benefits some functions making them cache-friendly and also avoids matrix -* transpositions sometimes required by OpenGL -* Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3] -* - Functions are always self-contained, no function use another raymath function inside, -* required code is directly re-implemented inside -* - Functions input parameters are always received by value (2 unavoidable exceptions) -* - Functions use always a "result" variable for return -* - Functions are always defined inline -* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience) -* - No compound literals used to make sure libray is compatible with C++ -* -* CONFIGURATION: -* #define RAYMATH_IMPLEMENTATION -* Generates the implementation of the library into the included file. -* If not defined, the library is in header only mode and can be included in other headers -* or source files without problems. But only ONE file should hold the implementation. -* -* #define RAYMATH_STATIC_INLINE -* Define static inline functions code, so #include header suffices for use. -* This may use up lots of memory. -* -* -* LICENSE: zlib/libpng -* -* Copyright (c) 2015-2023 Ramon Santamaria (@raysan5) -* -* This software is provided "as-is", without any express or implied warranty. In no event -* will the authors be held liable for any damages arising from the use of this software. -* -* Permission is granted to anyone to use this software for any purpose, including commercial -* applications, and to alter it and redistribute it freely, subject to the following restrictions: -* -* 1. The origin of this software must not be misrepresented; you must not claim that you -* wrote the original software. If you use this software in a product, an acknowledgment -* in the product documentation would be appreciated but is not required. -* -* 2. Altered source versions must be plainly marked as such, and must not be misrepresented -* as being the original software. -* -* 3. This notice may not be removed or altered from any source distribution. -* -**********************************************************************************************/ - -#ifndef RAYMATH_H -#define RAYMATH_H - -#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_STATIC_INLINE) - #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_STATIC_INLINE is contradictory" -#endif - -// Function specifiers definition -#if defined(RAYMATH_IMPLEMENTATION) - #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED) - #define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll). - #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED) - #define RMAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll) - #else - #define RMAPI extern inline // Provide external definition - #endif -#elif defined(RAYMATH_STATIC_INLINE) - #define RMAPI static inline // Functions may be inlined, no external out-of-line definition -#else - #if defined(__TINYC__) - #define RMAPI static inline // plain inline not supported by tinycc (See issue #435) - #else - #define RMAPI inline // Functions may be inlined or external definition used - #endif -#endif - -//---------------------------------------------------------------------------------- -// Defines and Macros -//---------------------------------------------------------------------------------- -#ifndef PI - #define PI 3.14159265358979323846f -#endif - -#ifndef EPSILON - #define EPSILON 0.000001f -#endif - -#ifndef DEG2RAD - #define DEG2RAD (PI/180.0f) -#endif - -#ifndef RAD2DEG - #define RAD2DEG (180.0f/PI) -#endif - -// Get float vector for Matrix -#ifndef MatrixToFloat - #define MatrixToFloat(mat) (MatrixToFloatV(mat).v) -#endif - -// Get float vector for Vector3 -#ifndef Vector3ToFloat - #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v) -#endif - -//---------------------------------------------------------------------------------- -// Types and Structures Definition -//---------------------------------------------------------------------------------- -#if !defined(RL_VECTOR2_TYPE) -// Vector2 type -typedef struct Vector2 { - float x; - float y; -} Vector2; -#define RL_VECTOR2_TYPE -#endif - -#if !defined(RL_VECTOR3_TYPE) -// Vector3 type -typedef struct Vector3 { - float x; - float y; - float z; -} Vector3; -#define RL_VECTOR3_TYPE -#endif - -#if !defined(RL_VECTOR4_TYPE) -// Vector4 type -typedef struct Vector4 { - float x; - float y; - float z; - float w; -} Vector4; -#define RL_VECTOR4_TYPE -#endif - -#if !defined(RL_QUATERNION_TYPE) -// Quaternion type -typedef Vector4 Quaternion; -#define RL_QUATERNION_TYPE -#endif - -#if !defined(RL_MATRIX_TYPE) -// Matrix type (OpenGL style 4x4 - right handed, column major) -typedef struct Matrix { - float m0, m4, m8, m12; // Matrix first row (4 components) - float m1, m5, m9, m13; // Matrix second row (4 components) - float m2, m6, m10, m14; // Matrix third row (4 components) - float m3, m7, m11, m15; // Matrix fourth row (4 components) -} Matrix; -#define RL_MATRIX_TYPE -#endif - -// NOTE: Helper types to be used instead of array return types for *ToFloat functions -typedef struct float3 { - float v[3]; -} float3; - -typedef struct float16 { - float v[16]; -} float16; - -#include // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabs() - -//---------------------------------------------------------------------------------- -// Module Functions Definition - Utils math -//---------------------------------------------------------------------------------- - -// Clamp float value -RMAPI float Clamp(float value, float min, float max) -{ - float result = (value < min)? min : value; - - if (result > max) result = max; - - return result; -} - -// Calculate linear interpolation between two floats -RMAPI float Lerp(float start, float end, float amount) -{ - float result = start + amount*(end - start); - - return result; -} - -// Normalize input value within input range -RMAPI float Normalize(float value, float start, float end) -{ - float result = (value - start)/(end - start); - - return result; -} - -// Remap input value within input range to output range -RMAPI float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd) -{ - float result = (value - inputStart)/(inputEnd - inputStart)*(outputEnd - outputStart) + outputStart; - - return result; -} - -// Wrap input value from min to max -RMAPI float Wrap(float value, float min, float max) -{ - float result = value - (max - min)*floorf((value - min)/(max - min)); - - return result; -} - -// Check whether two given floats are almost equal -RMAPI int FloatEquals(float x, float y) -{ -#if !defined(EPSILON) - #define EPSILON 0.000001f -#endif - - int result = (fabsf(x - y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y)))); - - return result; -} - -//---------------------------------------------------------------------------------- -// Module Functions Definition - Vector2 math -//---------------------------------------------------------------------------------- - -// Vector with components value 0.0f -RMAPI Vector2 Vector2Zero(void) -{ - Vector2 result = { 0.0f, 0.0f }; - - return result; -} - -// Vector with components value 1.0f -RMAPI Vector2 Vector2One(void) -{ - Vector2 result = { 1.0f, 1.0f }; - - return result; -} - -// Add two vectors (v1 + v2) -RMAPI Vector2 Vector2Add(Vector2 v1, Vector2 v2) -{ - Vector2 result = { v1.x + v2.x, v1.y + v2.y }; - - return result; -} - -// Add vector and float value -RMAPI Vector2 Vector2AddValue(Vector2 v, float add) -{ - Vector2 result = { v.x + add, v.y + add }; - - return result; -} - -// Subtract two vectors (v1 - v2) -RMAPI Vector2 Vector2Subtract(Vector2 v1, Vector2 v2) -{ - Vector2 result = { v1.x - v2.x, v1.y - v2.y }; - - return result; -} - -// Subtract vector by float value -RMAPI Vector2 Vector2SubtractValue(Vector2 v, float sub) -{ - Vector2 result = { v.x - sub, v.y - sub }; - - return result; -} - -// Calculate vector length -RMAPI float Vector2Length(Vector2 v) -{ - float result = sqrtf((v.x*v.x) + (v.y*v.y)); - - return result; -} - -// Calculate vector square length -RMAPI float Vector2LengthSqr(Vector2 v) -{ - float result = (v.x*v.x) + (v.y*v.y); - - return result; -} - -// Calculate two vectors dot product -RMAPI float Vector2DotProduct(Vector2 v1, Vector2 v2) -{ - float result = (v1.x*v2.x + v1.y*v2.y); - - return result; -} - -// Calculate distance between two vectors -RMAPI float Vector2Distance(Vector2 v1, Vector2 v2) -{ - float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y)); - - return result; -} - -// Calculate square distance between two vectors -RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2) -{ - float result = ((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y)); - - return result; -} - -// Calculate angle between two vectors -// NOTE: Angle is calculated from origin point (0, 0) -RMAPI float Vector2Angle(Vector2 v1, Vector2 v2) -{ - float result = 0.0f; - - float dot = v1.x*v2.x + v1.y*v2.y; - float det = v1.x*v2.y - v1.y*v2.x; - - result = atan2f(det, dot); - - return result; -} - -// Calculate angle defined by a two vectors line -// NOTE: Parameters need to be normalized -// Current implementation should be aligned with glm::angle -RMAPI float Vector2LineAngle(Vector2 start, Vector2 end) -{ - float result = 0.0f; - - // TODO(10/9/2023): Currently angles move clockwise, determine if this is wanted behavior - result = -atan2f(end.y - start.y, end.x - start.x); - - return result; -} - -// Scale vector (multiply by value) -RMAPI Vector2 Vector2Scale(Vector2 v, float scale) -{ - Vector2 result = { v.x*scale, v.y*scale }; - - return result; -} - -// Multiply vector by vector -RMAPI Vector2 Vector2Multiply(Vector2 v1, Vector2 v2) -{ - Vector2 result = { v1.x*v2.x, v1.y*v2.y }; - - return result; -} - -// Negate vector -RMAPI Vector2 Vector2Negate(Vector2 v) -{ - Vector2 result = { -v.x, -v.y }; - - return result; -} - -// Divide vector by vector -RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2) -{ - Vector2 result = { v1.x/v2.x, v1.y/v2.y }; - - return result; -} - -// Normalize provided vector -RMAPI Vector2 Vector2Normalize(Vector2 v) -{ - Vector2 result = { 0 }; - float length = sqrtf((v.x*v.x) + (v.y*v.y)); - - if (length > 0) - { - float ilength = 1.0f/length; - result.x = v.x*ilength; - result.y = v.y*ilength; - } - - return result; -} - -// Transforms a Vector2 by a given Matrix -RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat) -{ - Vector2 result = { 0 }; - - float x = v.x; - float y = v.y; - float z = 0; - - result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; - result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; - - return result; -} - -// Calculate linear interpolation between two vectors -RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount) -{ - Vector2 result = { 0 }; - - result.x = v1.x + amount*(v2.x - v1.x); - result.y = v1.y + amount*(v2.y - v1.y); - - return result; -} - -// Calculate reflected vector to normal -RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal) -{ - Vector2 result = { 0 }; - - float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product - - result.x = v.x - (2.0f*normal.x)*dotProduct; - result.y = v.y - (2.0f*normal.y)*dotProduct; - - return result; -} - -// Rotate vector by angle -RMAPI Vector2 Vector2Rotate(Vector2 v, float angle) -{ - Vector2 result = { 0 }; - - float cosres = cosf(angle); - float sinres = sinf(angle); - - result.x = v.x*cosres - v.y*sinres; - result.y = v.x*sinres + v.y*cosres; - - return result; -} - -// Move Vector towards target -RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance) -{ - Vector2 result = { 0 }; - - float dx = target.x - v.x; - float dy = target.y - v.y; - float value = (dx*dx) + (dy*dy); - - if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target; - - float dist = sqrtf(value); - - result.x = v.x + dx/dist*maxDistance; - result.y = v.y + dy/dist*maxDistance; - - return result; -} - -// Invert the given vector -RMAPI Vector2 Vector2Invert(Vector2 v) -{ - Vector2 result = { 1.0f/v.x, 1.0f/v.y }; - - return result; -} - -// Clamp the components of the vector between -// min and max values specified by the given vectors -RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max) -{ - Vector2 result = { 0 }; - - result.x = fminf(max.x, fmaxf(min.x, v.x)); - result.y = fminf(max.y, fmaxf(min.y, v.y)); - - return result; -} - -// Clamp the magnitude of the vector between two min and max values -RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max) -{ - Vector2 result = v; - - float length = (v.x*v.x) + (v.y*v.y); - if (length > 0.0f) - { - length = sqrtf(length); - - if (length < min) - { - float scale = min/length; - result.x = v.x*scale; - result.y = v.y*scale; - } - else if (length > max) - { - float scale = max/length; - result.x = v.x*scale; - result.y = v.y*scale; - } - } - - return result; -} - -// Check whether two given vectors are almost equal -RMAPI int Vector2Equals(Vector2 p, Vector2 q) -{ -#if !defined(EPSILON) - #define EPSILON 0.000001f -#endif - - int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && - ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))); - - return result; -} - -//---------------------------------------------------------------------------------- -// Module Functions Definition - Vector3 math -//---------------------------------------------------------------------------------- - -// Vector with components value 0.0f -RMAPI Vector3 Vector3Zero(void) -{ - Vector3 result = { 0.0f, 0.0f, 0.0f }; - - return result; -} - -// Vector with components value 1.0f -RMAPI Vector3 Vector3One(void) -{ - Vector3 result = { 1.0f, 1.0f, 1.0f }; - - return result; -} - -// Add two vectors -RMAPI Vector3 Vector3Add(Vector3 v1, Vector3 v2) -{ - Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z }; - - return result; -} - -// Add vector and float value -RMAPI Vector3 Vector3AddValue(Vector3 v, float add) -{ - Vector3 result = { v.x + add, v.y + add, v.z + add }; - - return result; -} - -// Subtract two vectors -RMAPI Vector3 Vector3Subtract(Vector3 v1, Vector3 v2) -{ - Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z }; - - return result; -} - -// Subtract vector by float value -RMAPI Vector3 Vector3SubtractValue(Vector3 v, float sub) -{ - Vector3 result = { v.x - sub, v.y - sub, v.z - sub }; - - return result; -} - -// Multiply vector by scalar -RMAPI Vector3 Vector3Scale(Vector3 v, float scalar) -{ - Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar }; - - return result; -} - -// Multiply vector by vector -RMAPI Vector3 Vector3Multiply(Vector3 v1, Vector3 v2) -{ - Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z }; - - return result; -} - -// Calculate two vectors cross product -RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2) -{ - Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x }; - - return result; -} - -// Calculate one vector perpendicular vector -RMAPI Vector3 Vector3Perpendicular(Vector3 v) -{ - Vector3 result = { 0 }; - - float min = (float) fabs(v.x); - Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; - - if (fabsf(v.y) < min) - { - min = (float) fabs(v.y); - Vector3 tmp = {0.0f, 1.0f, 0.0f}; - cardinalAxis = tmp; - } - - if (fabsf(v.z) < min) - { - Vector3 tmp = {0.0f, 0.0f, 1.0f}; - cardinalAxis = tmp; - } - - // Cross product between vectors - result.x = v.y*cardinalAxis.z - v.z*cardinalAxis.y; - result.y = v.z*cardinalAxis.x - v.x*cardinalAxis.z; - result.z = v.x*cardinalAxis.y - v.y*cardinalAxis.x; - - return result; -} - -// Calculate vector length -RMAPI float Vector3Length(const Vector3 v) -{ - float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - - return result; -} - -// Calculate vector square length -RMAPI float Vector3LengthSqr(const Vector3 v) -{ - float result = v.x*v.x + v.y*v.y + v.z*v.z; - - return result; -} - -// Calculate two vectors dot product -RMAPI float Vector3DotProduct(Vector3 v1, Vector3 v2) -{ - float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); - - return result; -} - -// Calculate distance between two vectors -RMAPI float Vector3Distance(Vector3 v1, Vector3 v2) -{ - float result = 0.0f; - - float dx = v2.x - v1.x; - float dy = v2.y - v1.y; - float dz = v2.z - v1.z; - result = sqrtf(dx*dx + dy*dy + dz*dz); - - return result; -} - -// Calculate square distance between two vectors -RMAPI float Vector3DistanceSqr(Vector3 v1, Vector3 v2) -{ - float result = 0.0f; - - float dx = v2.x - v1.x; - float dy = v2.y - v1.y; - float dz = v2.z - v1.z; - result = dx*dx + dy*dy + dz*dz; - - return result; -} - -// Calculate angle between two vectors -RMAPI float Vector3Angle(Vector3 v1, Vector3 v2) -{ - float result = 0.0f; - - Vector3 cross = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x }; - float len = sqrtf(cross.x*cross.x + cross.y*cross.y + cross.z*cross.z); - float dot = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); - result = atan2f(len, dot); - - return result; -} - -// Negate provided vector (invert direction) -RMAPI Vector3 Vector3Negate(Vector3 v) -{ - Vector3 result = { -v.x, -v.y, -v.z }; - - return result; -} - -// Divide vector by vector -RMAPI Vector3 Vector3Divide(Vector3 v1, Vector3 v2) -{ - Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z }; - - return result; -} - -// Normalize provided vector -RMAPI Vector3 Vector3Normalize(Vector3 v) -{ - Vector3 result = v; - - float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length != 0.0f) - { - float ilength = 1.0f/length; - - result.x *= ilength; - result.y *= ilength; - result.z *= ilength; - } - - return result; -} - -//Calculate the projection of the vector v1 on to v2 -RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2) -{ - Vector3 result = { 0 }; - - float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); - float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); - - float mag = v1dv2/v2dv2; - - result.x = v2.x*mag; - result.y = v2.y*mag; - result.z = v2.z*mag; - - return result; -} - -//Calculate the rejection of the vector v1 on to v2 -RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2) -{ - Vector3 result = { 0 }; - - float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); - float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); - - float mag = v1dv2/v2dv2; - - result.x = v1.x - (v2.x*mag); - result.y = v1.y - (v2.y*mag); - result.z = v1.z - (v2.z*mag); - - return result; -} - -// Orthonormalize provided vectors -// Makes vectors normalized and orthogonal to each other -// Gram-Schmidt function implementation -RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2) -{ - float length = 0.0f; - float ilength = 0.0f; - - // Vector3Normalize(*v1); - Vector3 v = *v1; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - v1->x *= ilength; - v1->y *= ilength; - v1->z *= ilength; - - // Vector3CrossProduct(*v1, *v2) - Vector3 vn1 = { v1->y*v2->z - v1->z*v2->y, v1->z*v2->x - v1->x*v2->z, v1->x*v2->y - v1->y*v2->x }; - - // Vector3Normalize(vn1); - v = vn1; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - vn1.x *= ilength; - vn1.y *= ilength; - vn1.z *= ilength; - - // Vector3CrossProduct(vn1, *v1) - Vector3 vn2 = { vn1.y*v1->z - vn1.z*v1->y, vn1.z*v1->x - vn1.x*v1->z, vn1.x*v1->y - vn1.y*v1->x }; - - *v2 = vn2; -} - -// Transforms a Vector3 by a given Matrix -RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat) -{ - Vector3 result = { 0 }; - - float x = v.x; - float y = v.y; - float z = v.z; - - result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; - result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; - result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14; - - return result; -} - -// Transform a vector by quaternion rotation -RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q) -{ - Vector3 result = { 0 }; - - result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y); - result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z); - result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z); - - return result; -} - -// Rotates a vector around an axis -RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle) -{ - // Using Euler-Rodrigues Formula - // Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula - - Vector3 result = v; - - // Vector3Normalize(axis); - float length = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z); - if (length == 0.0f) length = 1.0f; - float ilength = 1.0f / length; - axis.x *= ilength; - axis.y *= ilength; - axis.z *= ilength; - - angle /= 2.0f; - float a = sinf(angle); - float b = axis.x*a; - float c = axis.y*a; - float d = axis.z*a; - a = cosf(angle); - Vector3 w = { b, c, d }; - - // Vector3CrossProduct(w, v) - Vector3 wv = { w.y*v.z - w.z*v.y, w.z*v.x - w.x*v.z, w.x*v.y - w.y*v.x }; - - // Vector3CrossProduct(w, wv) - Vector3 wwv = { w.y*wv.z - w.z*wv.y, w.z*wv.x - w.x*wv.z, w.x*wv.y - w.y*wv.x }; - - // Vector3Scale(wv, 2*a) - a *= 2; - wv.x *= a; - wv.y *= a; - wv.z *= a; - - // Vector3Scale(wwv, 2) - wwv.x *= 2; - wwv.y *= 2; - wwv.z *= 2; - - result.x += wv.x; - result.y += wv.y; - result.z += wv.z; - - result.x += wwv.x; - result.y += wwv.y; - result.z += wwv.z; - - return result; -} - -// Calculate linear interpolation between two vectors -RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) -{ - Vector3 result = { 0 }; - - result.x = v1.x + amount*(v2.x - v1.x); - result.y = v1.y + amount*(v2.y - v1.y); - result.z = v1.z + amount*(v2.z - v1.z); - - return result; -} - -// Calculate reflected vector to normal -RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal) -{ - Vector3 result = { 0 }; - - // I is the original vector - // N is the normal of the incident plane - // R = I - (2*N*(DotProduct[I, N])) - - float dotProduct = (v.x*normal.x + v.y*normal.y + v.z*normal.z); - - result.x = v.x - (2.0f*normal.x)*dotProduct; - result.y = v.y - (2.0f*normal.y)*dotProduct; - result.z = v.z - (2.0f*normal.z)*dotProduct; - - return result; -} - -// Get min value for each pair of components -RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2) -{ - Vector3 result = { 0 }; - - result.x = fminf(v1.x, v2.x); - result.y = fminf(v1.y, v2.y); - result.z = fminf(v1.z, v2.z); - - return result; -} - -// Get max value for each pair of components -RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2) -{ - Vector3 result = { 0 }; - - result.x = fmaxf(v1.x, v2.x); - result.y = fmaxf(v1.y, v2.y); - result.z = fmaxf(v1.z, v2.z); - - return result; -} - -// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c) -// NOTE: Assumes P is on the plane of the triangle -RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c) -{ - Vector3 result = { 0 }; - - Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z }; // Vector3Subtract(b, a) - Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z }; // Vector3Subtract(c, a) - Vector3 v2 = { p.x - a.x, p.y - a.y, p.z - a.z }; // Vector3Subtract(p, a) - float d00 = (v0.x*v0.x + v0.y*v0.y + v0.z*v0.z); // Vector3DotProduct(v0, v0) - float d01 = (v0.x*v1.x + v0.y*v1.y + v0.z*v1.z); // Vector3DotProduct(v0, v1) - float d11 = (v1.x*v1.x + v1.y*v1.y + v1.z*v1.z); // Vector3DotProduct(v1, v1) - float d20 = (v2.x*v0.x + v2.y*v0.y + v2.z*v0.z); // Vector3DotProduct(v2, v0) - float d21 = (v2.x*v1.x + v2.y*v1.y + v2.z*v1.z); // Vector3DotProduct(v2, v1) - - float denom = d00*d11 - d01*d01; - - result.y = (d11*d20 - d01*d21)/denom; - result.z = (d00*d21 - d01*d20)/denom; - result.x = 1.0f - (result.z + result.y); - - return result; -} - -// Projects a Vector3 from screen space into object space -// NOTE: We are avoiding calling other raymath functions despite available -RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view) -{ - Vector3 result = { 0 }; - - // Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it - Matrix matViewProj = { // MatrixMultiply(view, projection); - view.m0*projection.m0 + view.m1*projection.m4 + view.m2*projection.m8 + view.m3*projection.m12, - view.m0*projection.m1 + view.m1*projection.m5 + view.m2*projection.m9 + view.m3*projection.m13, - view.m0*projection.m2 + view.m1*projection.m6 + view.m2*projection.m10 + view.m3*projection.m14, - view.m0*projection.m3 + view.m1*projection.m7 + view.m2*projection.m11 + view.m3*projection.m15, - view.m4*projection.m0 + view.m5*projection.m4 + view.m6*projection.m8 + view.m7*projection.m12, - view.m4*projection.m1 + view.m5*projection.m5 + view.m6*projection.m9 + view.m7*projection.m13, - view.m4*projection.m2 + view.m5*projection.m6 + view.m6*projection.m10 + view.m7*projection.m14, - view.m4*projection.m3 + view.m5*projection.m7 + view.m6*projection.m11 + view.m7*projection.m15, - view.m8*projection.m0 + view.m9*projection.m4 + view.m10*projection.m8 + view.m11*projection.m12, - view.m8*projection.m1 + view.m9*projection.m5 + view.m10*projection.m9 + view.m11*projection.m13, - view.m8*projection.m2 + view.m9*projection.m6 + view.m10*projection.m10 + view.m11*projection.m14, - view.m8*projection.m3 + view.m9*projection.m7 + view.m10*projection.m11 + view.m11*projection.m15, - view.m12*projection.m0 + view.m13*projection.m4 + view.m14*projection.m8 + view.m15*projection.m12, - view.m12*projection.m1 + view.m13*projection.m5 + view.m14*projection.m9 + view.m15*projection.m13, - view.m12*projection.m2 + view.m13*projection.m6 + view.m14*projection.m10 + view.m15*projection.m14, - view.m12*projection.m3 + view.m13*projection.m7 + view.m14*projection.m11 + view.m15*projection.m15 }; - - // Calculate inverted matrix -> MatrixInvert(matViewProj); - // Cache the matrix values (speed optimization) - float a00 = matViewProj.m0, a01 = matViewProj.m1, a02 = matViewProj.m2, a03 = matViewProj.m3; - float a10 = matViewProj.m4, a11 = matViewProj.m5, a12 = matViewProj.m6, a13 = matViewProj.m7; - float a20 = matViewProj.m8, a21 = matViewProj.m9, a22 = matViewProj.m10, a23 = matViewProj.m11; - float a30 = matViewProj.m12, a31 = matViewProj.m13, a32 = matViewProj.m14, a33 = matViewProj.m15; - - float b00 = a00*a11 - a01*a10; - float b01 = a00*a12 - a02*a10; - float b02 = a00*a13 - a03*a10; - float b03 = a01*a12 - a02*a11; - float b04 = a01*a13 - a03*a11; - float b05 = a02*a13 - a03*a12; - float b06 = a20*a31 - a21*a30; - float b07 = a20*a32 - a22*a30; - float b08 = a20*a33 - a23*a30; - float b09 = a21*a32 - a22*a31; - float b10 = a21*a33 - a23*a31; - float b11 = a22*a33 - a23*a32; - - // Calculate the invert determinant (inlined to avoid double-caching) - float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); - - Matrix matViewProjInv = { - (a11*b11 - a12*b10 + a13*b09)*invDet, - (-a01*b11 + a02*b10 - a03*b09)*invDet, - (a31*b05 - a32*b04 + a33*b03)*invDet, - (-a21*b05 + a22*b04 - a23*b03)*invDet, - (-a10*b11 + a12*b08 - a13*b07)*invDet, - (a00*b11 - a02*b08 + a03*b07)*invDet, - (-a30*b05 + a32*b02 - a33*b01)*invDet, - (a20*b05 - a22*b02 + a23*b01)*invDet, - (a10*b10 - a11*b08 + a13*b06)*invDet, - (-a00*b10 + a01*b08 - a03*b06)*invDet, - (a30*b04 - a31*b02 + a33*b00)*invDet, - (-a20*b04 + a21*b02 - a23*b00)*invDet, - (-a10*b09 + a11*b07 - a12*b06)*invDet, - (a00*b09 - a01*b07 + a02*b06)*invDet, - (-a30*b03 + a31*b01 - a32*b00)*invDet, - (a20*b03 - a21*b01 + a22*b00)*invDet }; - - // Create quaternion from source point - Quaternion quat = { source.x, source.y, source.z, 1.0f }; - - // Multiply quat point by unprojecte matrix - Quaternion qtransformed = { // QuaternionTransform(quat, matViewProjInv) - matViewProjInv.m0*quat.x + matViewProjInv.m4*quat.y + matViewProjInv.m8*quat.z + matViewProjInv.m12*quat.w, - matViewProjInv.m1*quat.x + matViewProjInv.m5*quat.y + matViewProjInv.m9*quat.z + matViewProjInv.m13*quat.w, - matViewProjInv.m2*quat.x + matViewProjInv.m6*quat.y + matViewProjInv.m10*quat.z + matViewProjInv.m14*quat.w, - matViewProjInv.m3*quat.x + matViewProjInv.m7*quat.y + matViewProjInv.m11*quat.z + matViewProjInv.m15*quat.w }; - - // Normalized world points in vectors - result.x = qtransformed.x/qtransformed.w; - result.y = qtransformed.y/qtransformed.w; - result.z = qtransformed.z/qtransformed.w; - - return result; -} - -// Get Vector3 as float array -RMAPI float3 Vector3ToFloatV(Vector3 v) -{ - float3 buffer = { 0 }; - - buffer.v[0] = v.x; - buffer.v[1] = v.y; - buffer.v[2] = v.z; - - return buffer; -} - -// Invert the given vector -RMAPI Vector3 Vector3Invert(Vector3 v) -{ - Vector3 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z }; - - return result; -} - -// Clamp the components of the vector between -// min and max values specified by the given vectors -RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max) -{ - Vector3 result = { 0 }; - - result.x = fminf(max.x, fmaxf(min.x, v.x)); - result.y = fminf(max.y, fmaxf(min.y, v.y)); - result.z = fminf(max.z, fmaxf(min.z, v.z)); - - return result; -} - -// Clamp the magnitude of the vector between two values -RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max) -{ - Vector3 result = v; - - float length = (v.x*v.x) + (v.y*v.y) + (v.z*v.z); - if (length > 0.0f) - { - length = sqrtf(length); - - if (length < min) - { - float scale = min/length; - result.x = v.x*scale; - result.y = v.y*scale; - result.z = v.z*scale; - } - else if (length > max) - { - float scale = max/length; - result.x = v.x*scale; - result.y = v.y*scale; - result.z = v.z*scale; - } - } - - return result; -} - -// Check whether two given vectors are almost equal -RMAPI int Vector3Equals(Vector3 p, Vector3 q) -{ -#if !defined(EPSILON) - #define EPSILON 0.000001f -#endif - - int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && - ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && - ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))); - - return result; -} - -// Compute the direction of a refracted ray -// v: normalized direction of the incoming ray -// n: normalized normal vector of the interface of two optical media -// r: ratio of the refractive index of the medium from where the ray comes -// to the refractive index of the medium on the other side of the surface -RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r) -{ - Vector3 result = { 0 }; - - float dot = v.x*n.x + v.y*n.y + v.z*n.z; - float d = 1.0f - r*r*(1.0f - dot*dot); - - if (d >= 0.0f) - { - d = sqrtf(d); - v.x = r*v.x - (r*dot + d)*n.x; - v.y = r*v.y - (r*dot + d)*n.y; - v.z = r*v.z - (r*dot + d)*n.z; - - result = v; - } - - return result; -} - -//---------------------------------------------------------------------------------- -// Module Functions Definition - Matrix math -//---------------------------------------------------------------------------------- - -// Compute matrix determinant -RMAPI float MatrixDeterminant(Matrix mat) -{ - float result = 0.0f; - - // Cache the matrix values (speed optimization) - float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; - float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; - float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; - float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; - - result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 + - a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 + - a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 + - a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 + - a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 + - a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33; - - return result; -} - -// Get the trace of the matrix (sum of the values along the diagonal) -RMAPI float MatrixTrace(Matrix mat) -{ - float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15); - - return result; -} - -// Transposes provided matrix -RMAPI Matrix MatrixTranspose(Matrix mat) -{ - Matrix result = { 0 }; - - result.m0 = mat.m0; - result.m1 = mat.m4; - result.m2 = mat.m8; - result.m3 = mat.m12; - result.m4 = mat.m1; - result.m5 = mat.m5; - result.m6 = mat.m9; - result.m7 = mat.m13; - result.m8 = mat.m2; - result.m9 = mat.m6; - result.m10 = mat.m10; - result.m11 = mat.m14; - result.m12 = mat.m3; - result.m13 = mat.m7; - result.m14 = mat.m11; - result.m15 = mat.m15; - - return result; -} - -// Invert provided matrix -RMAPI Matrix MatrixInvert(Matrix mat) -{ - Matrix result = { 0 }; - - // Cache the matrix values (speed optimization) - float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; - float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; - float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; - float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; - - float b00 = a00*a11 - a01*a10; - float b01 = a00*a12 - a02*a10; - float b02 = a00*a13 - a03*a10; - float b03 = a01*a12 - a02*a11; - float b04 = a01*a13 - a03*a11; - float b05 = a02*a13 - a03*a12; - float b06 = a20*a31 - a21*a30; - float b07 = a20*a32 - a22*a30; - float b08 = a20*a33 - a23*a30; - float b09 = a21*a32 - a22*a31; - float b10 = a21*a33 - a23*a31; - float b11 = a22*a33 - a23*a32; - - // Calculate the invert determinant (inlined to avoid double-caching) - float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); - - result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet; - result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet; - result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet; - result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet; - result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet; - result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet; - result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet; - result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet; - result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet; - result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet; - result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet; - result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet; - result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet; - result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet; - result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet; - result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet; - - return result; -} - -// Get identity matrix -RMAPI Matrix MatrixIdentity(void) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; - - return result; -} - -// Add two matrices -RMAPI Matrix MatrixAdd(Matrix left, Matrix right) -{ - Matrix result = { 0 }; - - result.m0 = left.m0 + right.m0; - result.m1 = left.m1 + right.m1; - result.m2 = left.m2 + right.m2; - result.m3 = left.m3 + right.m3; - result.m4 = left.m4 + right.m4; - result.m5 = left.m5 + right.m5; - result.m6 = left.m6 + right.m6; - result.m7 = left.m7 + right.m7; - result.m8 = left.m8 + right.m8; - result.m9 = left.m9 + right.m9; - result.m10 = left.m10 + right.m10; - result.m11 = left.m11 + right.m11; - result.m12 = left.m12 + right.m12; - result.m13 = left.m13 + right.m13; - result.m14 = left.m14 + right.m14; - result.m15 = left.m15 + right.m15; - - return result; -} - -// Subtract two matrices (left - right) -RMAPI Matrix MatrixSubtract(Matrix left, Matrix right) -{ - Matrix result = { 0 }; - - result.m0 = left.m0 - right.m0; - result.m1 = left.m1 - right.m1; - result.m2 = left.m2 - right.m2; - result.m3 = left.m3 - right.m3; - result.m4 = left.m4 - right.m4; - result.m5 = left.m5 - right.m5; - result.m6 = left.m6 - right.m6; - result.m7 = left.m7 - right.m7; - result.m8 = left.m8 - right.m8; - result.m9 = left.m9 - right.m9; - result.m10 = left.m10 - right.m10; - result.m11 = left.m11 - right.m11; - result.m12 = left.m12 - right.m12; - result.m13 = left.m13 - right.m13; - result.m14 = left.m14 - right.m14; - result.m15 = left.m15 - right.m15; - - return result; -} - -// Get two matrix multiplication -// NOTE: When multiplying matrices... the order matters! -RMAPI Matrix MatrixMultiply(Matrix left, Matrix right) -{ - Matrix result = { 0 }; - - result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12; - result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13; - result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14; - result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15; - result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12; - result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13; - result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14; - result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15; - result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12; - result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13; - result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14; - result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15; - result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12; - result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13; - result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14; - result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15; - - return result; -} - -// Get translation matrix -RMAPI Matrix MatrixTranslate(float x, float y, float z) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, x, - 0.0f, 1.0f, 0.0f, y, - 0.0f, 0.0f, 1.0f, z, - 0.0f, 0.0f, 0.0f, 1.0f }; - - return result; -} - -// Create rotation matrix from axis and angle -// NOTE: Angle should be provided in radians -RMAPI Matrix MatrixRotate(Vector3 axis, float angle) -{ - Matrix result = { 0 }; - - float x = axis.x, y = axis.y, z = axis.z; - - float lengthSquared = x*x + y*y + z*z; - - if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f)) - { - float ilength = 1.0f/sqrtf(lengthSquared); - x *= ilength; - y *= ilength; - z *= ilength; - } - - float sinres = sinf(angle); - float cosres = cosf(angle); - float t = 1.0f - cosres; - - result.m0 = x*x*t + cosres; - result.m1 = y*x*t + z*sinres; - result.m2 = z*x*t - y*sinres; - result.m3 = 0.0f; - - result.m4 = x*y*t - z*sinres; - result.m5 = y*y*t + cosres; - result.m6 = z*y*t + x*sinres; - result.m7 = 0.0f; - - result.m8 = x*z*t + y*sinres; - result.m9 = y*z*t - x*sinres; - result.m10 = z*z*t + cosres; - result.m11 = 0.0f; - - result.m12 = 0.0f; - result.m13 = 0.0f; - result.m14 = 0.0f; - result.m15 = 1.0f; - - return result; -} - -// Get x-rotation matrix -// NOTE: Angle must be provided in radians -RMAPI Matrix MatrixRotateX(float angle) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() - - float cosres = cosf(angle); - float sinres = sinf(angle); - - result.m5 = cosres; - result.m6 = sinres; - result.m9 = -sinres; - result.m10 = cosres; - - return result; -} - -// Get y-rotation matrix -// NOTE: Angle must be provided in radians -RMAPI Matrix MatrixRotateY(float angle) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() - - float cosres = cosf(angle); - float sinres = sinf(angle); - - result.m0 = cosres; - result.m2 = -sinres; - result.m8 = sinres; - result.m10 = cosres; - - return result; -} - -// Get z-rotation matrix -// NOTE: Angle must be provided in radians -RMAPI Matrix MatrixRotateZ(float angle) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() - - float cosres = cosf(angle); - float sinres = sinf(angle); - - result.m0 = cosres; - result.m1 = sinres; - result.m4 = -sinres; - result.m5 = cosres; - - return result; -} - - -// Get xyz-rotation matrix -// NOTE: Angle must be provided in radians -RMAPI Matrix MatrixRotateXYZ(Vector3 angle) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() - - float cosz = cosf(-angle.z); - float sinz = sinf(-angle.z); - float cosy = cosf(-angle.y); - float siny = sinf(-angle.y); - float cosx = cosf(-angle.x); - float sinx = sinf(-angle.x); - - result.m0 = cosz*cosy; - result.m1 = (cosz*siny*sinx) - (sinz*cosx); - result.m2 = (cosz*siny*cosx) + (sinz*sinx); - - result.m4 = sinz*cosy; - result.m5 = (sinz*siny*sinx) + (cosz*cosx); - result.m6 = (sinz*siny*cosx) - (cosz*sinx); - - result.m8 = -siny; - result.m9 = cosy*sinx; - result.m10= cosy*cosx; - - return result; -} - -// Get zyx-rotation matrix -// NOTE: Angle must be provided in radians -RMAPI Matrix MatrixRotateZYX(Vector3 angle) -{ - Matrix result = { 0 }; - - float cz = cosf(angle.z); - float sz = sinf(angle.z); - float cy = cosf(angle.y); - float sy = sinf(angle.y); - float cx = cosf(angle.x); - float sx = sinf(angle.x); - - result.m0 = cz*cy; - result.m4 = cz*sy*sx - cx*sz; - result.m8 = sz*sx + cz*cx*sy; - result.m12 = 0; - - result.m1 = cy*sz; - result.m5 = cz*cx + sz*sy*sx; - result.m9 = cx*sz*sy - cz*sx; - result.m13 = 0; - - result.m2 = -sy; - result.m6 = cy*sx; - result.m10 = cy*cx; - result.m14 = 0; - - result.m3 = 0; - result.m7 = 0; - result.m11 = 0; - result.m15 = 1; - - return result; -} - -// Get scaling matrix -RMAPI Matrix MatrixScale(float x, float y, float z) -{ - Matrix result = { x, 0.0f, 0.0f, 0.0f, - 0.0f, y, 0.0f, 0.0f, - 0.0f, 0.0f, z, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; - - return result; -} - -// Get perspective projection matrix -RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far) -{ - Matrix result = { 0 }; - - float rl = (float)(right - left); - float tb = (float)(top - bottom); - float fn = (float)(far - near); - - result.m0 = ((float)near*2.0f)/rl; - result.m1 = 0.0f; - result.m2 = 0.0f; - result.m3 = 0.0f; - - result.m4 = 0.0f; - result.m5 = ((float)near*2.0f)/tb; - result.m6 = 0.0f; - result.m7 = 0.0f; - - result.m8 = ((float)right + (float)left)/rl; - result.m9 = ((float)top + (float)bottom)/tb; - result.m10 = -((float)far + (float)near)/fn; - result.m11 = -1.0f; - - result.m12 = 0.0f; - result.m13 = 0.0f; - result.m14 = -((float)far*(float)near*2.0f)/fn; - result.m15 = 0.0f; - - return result; -} - -// Get perspective projection matrix -// NOTE: Fovy angle must be provided in radians -RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane) -{ - Matrix result = { 0 }; - - double top = nearPlane*tan(fovY*0.5); - double bottom = -top; - double right = top*aspect; - double left = -right; - - // MatrixFrustum(-right, right, -top, top, near, far); - float rl = (float)(right - left); - float tb = (float)(top - bottom); - float fn = (float)(farPlane - nearPlane); - - result.m0 = ((float)nearPlane*2.0f)/rl; - result.m5 = ((float)nearPlane*2.0f)/tb; - result.m8 = ((float)right + (float)left)/rl; - result.m9 = ((float)top + (float)bottom)/tb; - result.m10 = -((float)farPlane + (float)nearPlane)/fn; - result.m11 = -1.0f; - result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn; - - return result; -} - -// Get orthographic projection matrix -RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane) -{ - Matrix result = { 0 }; - - float rl = (float)(right - left); - float tb = (float)(top - bottom); - float fn = (float)(farPlane - nearPlane); - - result.m0 = 2.0f/rl; - result.m1 = 0.0f; - result.m2 = 0.0f; - result.m3 = 0.0f; - result.m4 = 0.0f; - result.m5 = 2.0f/tb; - result.m6 = 0.0f; - result.m7 = 0.0f; - result.m8 = 0.0f; - result.m9 = 0.0f; - result.m10 = -2.0f/fn; - result.m11 = 0.0f; - result.m12 = -((float)left + (float)right)/rl; - result.m13 = -((float)top + (float)bottom)/tb; - result.m14 = -((float)farPlane + (float)nearPlane)/fn; - result.m15 = 1.0f; - - return result; -} - -// Get camera look-at matrix (view matrix) -RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) -{ - Matrix result = { 0 }; - - float length = 0.0f; - float ilength = 0.0f; - - // Vector3Subtract(eye, target) - Vector3 vz = { eye.x - target.x, eye.y - target.y, eye.z - target.z }; - - // Vector3Normalize(vz) - Vector3 v = vz; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - vz.x *= ilength; - vz.y *= ilength; - vz.z *= ilength; - - // Vector3CrossProduct(up, vz) - Vector3 vx = { up.y*vz.z - up.z*vz.y, up.z*vz.x - up.x*vz.z, up.x*vz.y - up.y*vz.x }; - - // Vector3Normalize(x) - v = vx; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - vx.x *= ilength; - vx.y *= ilength; - vx.z *= ilength; - - // Vector3CrossProduct(vz, vx) - Vector3 vy = { vz.y*vx.z - vz.z*vx.y, vz.z*vx.x - vz.x*vx.z, vz.x*vx.y - vz.y*vx.x }; - - result.m0 = vx.x; - result.m1 = vy.x; - result.m2 = vz.x; - result.m3 = 0.0f; - result.m4 = vx.y; - result.m5 = vy.y; - result.m6 = vz.y; - result.m7 = 0.0f; - result.m8 = vx.z; - result.m9 = vy.z; - result.m10 = vz.z; - result.m11 = 0.0f; - result.m12 = -(vx.x*eye.x + vx.y*eye.y + vx.z*eye.z); // Vector3DotProduct(vx, eye) - result.m13 = -(vy.x*eye.x + vy.y*eye.y + vy.z*eye.z); // Vector3DotProduct(vy, eye) - result.m14 = -(vz.x*eye.x + vz.y*eye.y + vz.z*eye.z); // Vector3DotProduct(vz, eye) - result.m15 = 1.0f; - - return result; -} - -// Get float array of matrix data -RMAPI float16 MatrixToFloatV(Matrix mat) -{ - float16 result = { 0 }; - - result.v[0] = mat.m0; - result.v[1] = mat.m1; - result.v[2] = mat.m2; - result.v[3] = mat.m3; - result.v[4] = mat.m4; - result.v[5] = mat.m5; - result.v[6] = mat.m6; - result.v[7] = mat.m7; - result.v[8] = mat.m8; - result.v[9] = mat.m9; - result.v[10] = mat.m10; - result.v[11] = mat.m11; - result.v[12] = mat.m12; - result.v[13] = mat.m13; - result.v[14] = mat.m14; - result.v[15] = mat.m15; - - return result; -} - -//---------------------------------------------------------------------------------- -// Module Functions Definition - Quaternion math -//---------------------------------------------------------------------------------- - -// Add two quaternions -RMAPI Quaternion QuaternionAdd(Quaternion q1, Quaternion q2) -{ - Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w}; - - return result; -} - -// Add quaternion and float value -RMAPI Quaternion QuaternionAddValue(Quaternion q, float add) -{ - Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add}; - - return result; -} - -// Subtract two quaternions -RMAPI Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2) -{ - Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w}; - - return result; -} - -// Subtract quaternion and float value -RMAPI Quaternion QuaternionSubtractValue(Quaternion q, float sub) -{ - Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub}; - - return result; -} - -// Get identity quaternion -RMAPI Quaternion QuaternionIdentity(void) -{ - Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f }; - - return result; -} - -// Computes the length of a quaternion -RMAPI float QuaternionLength(Quaternion q) -{ - float result = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - - return result; -} - -// Normalize provided quaternion -RMAPI Quaternion QuaternionNormalize(Quaternion q) -{ - Quaternion result = { 0 }; - - float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - if (length == 0.0f) length = 1.0f; - float ilength = 1.0f/length; - - result.x = q.x*ilength; - result.y = q.y*ilength; - result.z = q.z*ilength; - result.w = q.w*ilength; - - return result; -} - -// Invert provided quaternion -RMAPI Quaternion QuaternionInvert(Quaternion q) -{ - Quaternion result = q; - - float lengthSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w; - - if (lengthSq != 0.0f) - { - float invLength = 1.0f/lengthSq; - - result.x *= -invLength; - result.y *= -invLength; - result.z *= -invLength; - result.w *= invLength; - } - - return result; -} - -// Calculate two quaternion multiplication -RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) -{ - Quaternion result = { 0 }; - - float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; - float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; - - result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby; - result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz; - result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx; - result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz; - - return result; -} - -// Scale quaternion by float value -RMAPI Quaternion QuaternionScale(Quaternion q, float mul) -{ - Quaternion result = { 0 }; - - result.x = q.x*mul; - result.y = q.y*mul; - result.z = q.z*mul; - result.w = q.w*mul; - - return result; -} - -// Divide two quaternions -RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2) -{ - Quaternion result = { q1.x/q2.x, q1.y/q2.y, q1.z/q2.z, q1.w/q2.w }; - - return result; -} - -// Calculate linear interpolation between two quaternions -RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount) -{ - Quaternion result = { 0 }; - - result.x = q1.x + amount*(q2.x - q1.x); - result.y = q1.y + amount*(q2.y - q1.y); - result.z = q1.z + amount*(q2.z - q1.z); - result.w = q1.w + amount*(q2.w - q1.w); - - return result; -} - -// Calculate slerp-optimized interpolation between two quaternions -RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount) -{ - Quaternion result = { 0 }; - - // QuaternionLerp(q1, q2, amount) - result.x = q1.x + amount*(q2.x - q1.x); - result.y = q1.y + amount*(q2.y - q1.y); - result.z = q1.z + amount*(q2.z - q1.z); - result.w = q1.w + amount*(q2.w - q1.w); - - // QuaternionNormalize(q); - Quaternion q = result; - float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - if (length == 0.0f) length = 1.0f; - float ilength = 1.0f/length; - - result.x = q.x*ilength; - result.y = q.y*ilength; - result.z = q.z*ilength; - result.w = q.w*ilength; - - return result; -} - -// Calculates spherical linear interpolation between two quaternions -RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) -{ - Quaternion result = { 0 }; - -#if !defined(EPSILON) - #define EPSILON 0.000001f -#endif - - float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w; - - if (cosHalfTheta < 0) - { - q2.x = -q2.x; q2.y = -q2.y; q2.z = -q2.z; q2.w = -q2.w; - cosHalfTheta = -cosHalfTheta; - } - - if (fabsf(cosHalfTheta) >= 1.0f) result = q1; - else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount); - else - { - float halfTheta = acosf(cosHalfTheta); - float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta); - - if (fabsf(sinHalfTheta) < EPSILON) - { - result.x = (q1.x*0.5f + q2.x*0.5f); - result.y = (q1.y*0.5f + q2.y*0.5f); - result.z = (q1.z*0.5f + q2.z*0.5f); - result.w = (q1.w*0.5f + q2.w*0.5f); - } - else - { - float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta; - float ratioB = sinf(amount*halfTheta)/sinHalfTheta; - - result.x = (q1.x*ratioA + q2.x*ratioB); - result.y = (q1.y*ratioA + q2.y*ratioB); - result.z = (q1.z*ratioA + q2.z*ratioB); - result.w = (q1.w*ratioA + q2.w*ratioB); - } - } - - return result; -} - -// Calculate quaternion based on the rotation from one vector to another -RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to) -{ - Quaternion result = { 0 }; - - float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z); // Vector3DotProduct(from, to) - Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to) - - result.x = cross.x; - result.y = cross.y; - result.z = cross.z; - result.w = 1.0f + cos2Theta; - - // QuaternionNormalize(q); - // NOTE: Normalize to essentially nlerp the original and identity to 0.5 - Quaternion q = result; - float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - if (length == 0.0f) length = 1.0f; - float ilength = 1.0f/length; - - result.x = q.x*ilength; - result.y = q.y*ilength; - result.z = q.z*ilength; - result.w = q.w*ilength; - - return result; -} - -// Get a quaternion for a given rotation matrix -RMAPI Quaternion QuaternionFromMatrix(Matrix mat) -{ - Quaternion result = { 0 }; - - float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10; - float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10; - float fourYSquaredMinus1 = mat.m5 - mat.m0 - mat.m10; - float fourZSquaredMinus1 = mat.m10 - mat.m0 - mat.m5; - - int biggestIndex = 0; - float fourBiggestSquaredMinus1 = fourWSquaredMinus1; - if (fourXSquaredMinus1 > fourBiggestSquaredMinus1) - { - fourBiggestSquaredMinus1 = fourXSquaredMinus1; - biggestIndex = 1; - } - - if (fourYSquaredMinus1 > fourBiggestSquaredMinus1) - { - fourBiggestSquaredMinus1 = fourYSquaredMinus1; - biggestIndex = 2; - } - - if (fourZSquaredMinus1 > fourBiggestSquaredMinus1) - { - fourBiggestSquaredMinus1 = fourZSquaredMinus1; - biggestIndex = 3; - } - - float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f)*0.5f; - float mult = 0.25f / biggestVal; - - switch (biggestIndex) - { - case 0: - result.w = biggestVal; - result.x = (mat.m6 - mat.m9)*mult; - result.y = (mat.m8 - mat.m2)*mult; - result.z = (mat.m1 - mat.m4)*mult; - break; - case 1: - result.x = biggestVal; - result.w = (mat.m6 - mat.m9)*mult; - result.y = (mat.m1 + mat.m4)*mult; - result.z = (mat.m8 + mat.m2)*mult; - break; - case 2: - result.y = biggestVal; - result.w = (mat.m8 - mat.m2)*mult; - result.x = (mat.m1 + mat.m4)*mult; - result.z = (mat.m6 + mat.m9)*mult; - break; - case 3: - result.z = biggestVal; - result.w = (mat.m1 - mat.m4)*mult; - result.x = (mat.m8 + mat.m2)*mult; - result.y = (mat.m6 + mat.m9)*mult; - break; - } - - return result; -} - -// Get a matrix for a given quaternion -RMAPI Matrix QuaternionToMatrix(Quaternion q) -{ - Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, - 0.0f, 1.0f, 0.0f, 0.0f, - 0.0f, 0.0f, 1.0f, 0.0f, - 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() - - float a2 = q.x*q.x; - float b2 = q.y*q.y; - float c2 = q.z*q.z; - float ac = q.x*q.z; - float ab = q.x*q.y; - float bc = q.y*q.z; - float ad = q.w*q.x; - float bd = q.w*q.y; - float cd = q.w*q.z; - - result.m0 = 1 - 2*(b2 + c2); - result.m1 = 2*(ab + cd); - result.m2 = 2*(ac - bd); - - result.m4 = 2*(ab - cd); - result.m5 = 1 - 2*(a2 + c2); - result.m6 = 2*(bc + ad); - - result.m8 = 2*(ac + bd); - result.m9 = 2*(bc - ad); - result.m10 = 1 - 2*(a2 + b2); - - return result; -} - -// Get rotation quaternion for an angle and axis -// NOTE: Angle must be provided in radians -RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle) -{ - Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f }; - - float axisLength = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z); - - if (axisLength != 0.0f) - { - angle *= 0.5f; - - float length = 0.0f; - float ilength = 0.0f; - - // Vector3Normalize(axis) - Vector3 v = axis; - length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - axis.x *= ilength; - axis.y *= ilength; - axis.z *= ilength; - - float sinres = sinf(angle); - float cosres = cosf(angle); - - result.x = axis.x*sinres; - result.y = axis.y*sinres; - result.z = axis.z*sinres; - result.w = cosres; - - // QuaternionNormalize(q); - Quaternion q = result; - length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - if (length == 0.0f) length = 1.0f; - ilength = 1.0f/length; - result.x = q.x*ilength; - result.y = q.y*ilength; - result.z = q.z*ilength; - result.w = q.w*ilength; - } - - return result; -} - -// Get the rotation angle and axis for a given quaternion -RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle) -{ - if (fabsf(q.w) > 1.0f) - { - // QuaternionNormalize(q); - float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); - if (length == 0.0f) length = 1.0f; - float ilength = 1.0f/length; - - q.x = q.x*ilength; - q.y = q.y*ilength; - q.z = q.z*ilength; - q.w = q.w*ilength; - } - - Vector3 resAxis = { 0.0f, 0.0f, 0.0f }; - float resAngle = 2.0f*acosf(q.w); - float den = sqrtf(1.0f - q.w*q.w); - - if (den > EPSILON) - { - resAxis.x = q.x/den; - resAxis.y = q.y/den; - resAxis.z = q.z/den; - } - else - { - // This occurs when the angle is zero. - // Not a problem: just set an arbitrary normalized axis. - resAxis.x = 1.0f; - } - - *outAxis = resAxis; - *outAngle = resAngle; -} - -// Get the quaternion equivalent to Euler angles -// NOTE: Rotation order is ZYX -RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll) -{ - Quaternion result = { 0 }; - - float x0 = cosf(pitch*0.5f); - float x1 = sinf(pitch*0.5f); - float y0 = cosf(yaw*0.5f); - float y1 = sinf(yaw*0.5f); - float z0 = cosf(roll*0.5f); - float z1 = sinf(roll*0.5f); - - result.x = x1*y0*z0 - x0*y1*z1; - result.y = x0*y1*z0 + x1*y0*z1; - result.z = x0*y0*z1 - x1*y1*z0; - result.w = x0*y0*z0 + x1*y1*z1; - - return result; -} - -// Get the Euler angles equivalent to quaternion (roll, pitch, yaw) -// NOTE: Angles are returned in a Vector3 struct in radians -RMAPI Vector3 QuaternionToEuler(Quaternion q) -{ - Vector3 result = { 0 }; - - // Roll (x-axis rotation) - float x0 = 2.0f*(q.w*q.x + q.y*q.z); - float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y); - result.x = atan2f(x0, x1); - - // Pitch (y-axis rotation) - float y0 = 2.0f*(q.w*q.y - q.z*q.x); - y0 = y0 > 1.0f ? 1.0f : y0; - y0 = y0 < -1.0f ? -1.0f : y0; - result.y = asinf(y0); - - // Yaw (z-axis rotation) - float z0 = 2.0f*(q.w*q.z + q.x*q.y); - float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z); - result.z = atan2f(z0, z1); - - return result; -} - -// Transform a quaternion given a transformation matrix -RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat) -{ - Quaternion result = { 0 }; - - result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w; - result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w; - result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w; - result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w; - - return result; -} - -// Check whether two given quaternions are almost equal -RMAPI int QuaternionEquals(Quaternion p, Quaternion q) -{ -#if !defined(EPSILON) - #define EPSILON 0.000001f -#endif - - int result = (((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && - ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && - ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) && - ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))) || - (((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && - ((fabsf(p.y + q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && - ((fabsf(p.z + q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) && - ((fabsf(p.w + q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))); - - return result; -} - -#endif // RAYMATH_H diff --git a/wasm_lib/libraylib.a b/wasm_lib/libraylib.a deleted file mode 100644 index dcff53b..0000000 Binary files a/wasm_lib/libraylib.a and /dev/null differ