#include "screen_trunner.h" // standard library includes #include #include #include #ifndef NDEBUG #include #endif // third party includes #include // local includes #include "3d_helpers.h" #include "ems.h" TRunnerScreen::TRunnerScreen(std::weak_ptr stack) : Screen(stack), surface(), camera{Vector3{0.0F, 1.0F, 0.5F}, Vector3{0.0F, 0.0F, 0.0F}, Vector3{0.0F, 1.0F, 0.0F}, 80.0F, CAMERA_PERSPECTIVE}, flags(), TEMP_cube_model(LoadModel("res/test_cube.obj")), TEMP_cube_texture(LoadTexture("res/test_cube_texture.png")), TEMP_matrix(get_identity_matrix()), camera_pos{0.0F, 4.0F, 4.0F}, camera_target{0.0F, 0.0F, 0.0F}, mouse_hit{0.0F, 0.0F, 0.0F}, pos_value(0.0F), idx_hit(SURFACE_UNIT_WIDTH / 2 + (SURFACE_UNIT_HEIGHT / 2) * SURFACE_UNIT_WIDTH) { #ifndef NDEBUG std::cout << "idx_hit initialized to " << idx_hit << std::endl; #endif TEMP_cube_model.materials[0].maps[MATERIAL_MAP_DIFFUSE].texture = TEMP_cube_texture; TEMP_cube_model.transform = TEMP_cube_model.transform * scale_matrix_xyz(0.5F, 0.5F, 0.5F) * translate_matrix_y(0.5F); // Initialize surface. #ifndef NDEBUG std::cout << "Initializing surface...\n"; #endif std::queue to_update; to_update.push(SURFACE_UNIT_WIDTH / 2 + (SURFACE_UNIT_HEIGHT / 2) * SURFACE_UNIT_WIDTH); while (!to_update.empty()) { unsigned int idx = to_update.front(); to_update.pop(); if (surface.at(idx).has_value()) { continue; } SurfaceUnit current{0.0F, 0.0F, 0.0F, 0.0F}; // 0000 0001 - nw set // 0000 0010 - ne set // 0000 0100 - sw set // 0000 1000 - se set unsigned char flags = 0; // Check adjacent. if (idx % SURFACE_UNIT_WIDTH > 0) { if (surface.at(idx - 1).has_value()) { if ((flags & 1) == 0) { current.nw = surface.at(idx - 1).value().ne; flags |= 1; } if ((flags & 4) == 0) { current.sw = surface.at(idx - 1).value().se; flags |= 4; } } else { to_update.push(idx - 1); } } if (idx % SURFACE_UNIT_WIDTH < SURFACE_UNIT_WIDTH - 1) { if (surface.at(idx + 1).has_value()) { if ((flags & 2) == 0) { current.ne = surface.at(idx + 1).value().nw; flags |= 2; } if ((flags & 8) == 0) { current.se = surface.at(idx + 1).value().sw; flags |= 8; } } else { to_update.push(idx + 1); } } if (idx / SURFACE_UNIT_WIDTH > 0) { if (surface.at(idx - SURFACE_UNIT_WIDTH).has_value()) { if ((flags & 1) == 0) { current.nw = surface.at(idx - SURFACE_UNIT_WIDTH).value().sw; flags |= 1; } if ((flags & 2) == 0) { current.ne = surface.at(idx - SURFACE_UNIT_WIDTH).value().se; flags |= 2; } } else { to_update.push(idx - SURFACE_UNIT_WIDTH); } } if (idx / SURFACE_UNIT_WIDTH < SURFACE_UNIT_HEIGHT - 1) { if (surface.at(idx + SURFACE_UNIT_WIDTH).has_value()) { if ((flags & 4) == 0) { current.sw = surface.at(idx + SURFACE_UNIT_WIDTH).value().nw; flags |= 4; } if ((flags & 8) == 0) { current.se = surface.at(idx + SURFACE_UNIT_WIDTH).value().ne; flags |= 8; } } else { to_update.push(idx + SURFACE_UNIT_WIDTH); } } // Calculate remaining values. float avg = 0.0F; unsigned int count = 0; if ((flags & 1) != 0) { avg += current.nw; ++count; } if ((flags & 2) != 0) { avg += current.ne; ++count; } if ((flags & 4) != 0) { avg += current.sw; ++count; } if ((flags & 8) != 0) { avg += current.se; ++count; } if (count != 0) { avg = avg / (float)count; } if ((flags & 1) == 0) { current.nw = avg + call_js_get_random() * SURFACE_HEIGHT_INTERVAL - SURFACE_HEIGHT_INTERVAL / 2.0F; } if ((flags & 2) == 0) { current.ne = avg + call_js_get_random() * SURFACE_HEIGHT_INTERVAL - SURFACE_HEIGHT_INTERVAL / 2.0F; } if ((flags & 4) == 0) { current.sw = avg + call_js_get_random() * SURFACE_HEIGHT_INTERVAL - SURFACE_HEIGHT_INTERVAL / 2.0F; } if ((flags & 8) == 0) { current.se = avg + call_js_get_random() * SURFACE_HEIGHT_INTERVAL - SURFACE_HEIGHT_INTERVAL / 2.0F; } surface.at(idx) = current; // Calculate bounding boxes. int x = idx % SURFACE_UNIT_WIDTH; int y = idx / SURFACE_UNIT_WIDTH; float xf = (float)(x)-SURFACE_X_OFFSET; float zf = (float)(y)-SURFACE_Y_OFFSET; surface_bbs.at(idx).min.x = xf - 0.5F; surface_bbs.at(idx).min.z = zf - 0.5F; surface_bbs.at(idx).max.x = xf + 0.5F; surface_bbs.at(idx).max.z = zf + 0.5F; surface_bbs.at(idx).min.y = current.nw; if (current.ne < surface_bbs.at(idx).min.y) { surface_bbs.at(idx).min.y = current.ne; } if (current.sw < surface_bbs.at(idx).min.y) { surface_bbs.at(idx).min.y = current.sw; } if (current.se < surface_bbs.at(idx).min.y) { surface_bbs.at(idx).min.y = current.se; } surface_bbs.at(idx).max.y = current.nw; if (current.ne > surface_bbs.at(idx).max.y) { surface_bbs.at(idx).max.y = current.ne; } if (current.sw > surface_bbs.at(idx).max.y) { surface_bbs.at(idx).max.y = current.sw; } if (current.se > surface_bbs.at(idx).max.y) { surface_bbs.at(idx).max.y = current.se; } } #ifndef NDEBUG std::cout << "Screen finished init.\n"; #endif } TRunnerScreen::~TRunnerScreen() { UnloadTexture(TEMP_cube_texture); UnloadModel(TEMP_cube_model); } bool TRunnerScreen::update(float dt) { pos_value += dt * POS_VALUE_INC_RATE; if (pos_value > PI * 2.0F) { pos_value -= PI * 2.0F; } if (IsMouseButtonPressed(0)) { float press_x = GetTouchX(); float press_y = GetTouchY(); Ray ray = GetMouseRay(Vector2{press_x, press_y}, camera); #ifndef NDEBUG std::cout << "X: " << press_x << ", Y: " << press_y << std::endl; std::cout << "Ray pos: " << ray.position.x << ", " << ray.position.y << ", " << ray.position.z << " Ray dir: " << ray.direction.x << ", " << ray.direction.y << ", " << ray.direction.z << std::endl; #endif for (unsigned int idx = 0; idx < SURFACE_UNIT_WIDTH * SURFACE_UNIT_HEIGHT; ++idx) { int x = idx % SURFACE_UNIT_WIDTH; int y = idx / SURFACE_UNIT_WIDTH; float xf = (float)(x)-SURFACE_X_OFFSET; float zf = (float)(y)-SURFACE_Y_OFFSET; const auto ¤t = surface[idx].value(); Vector3 nw{xf - 0.5F, current.nw, zf - 0.5F}; Vector3 ne{xf + 0.5F, current.ne, zf - 0.5F}; Vector3 sw{xf - 0.5F, current.sw, zf + 0.5F}; Vector3 se{xf + 0.5F, current.se, zf + 0.5F}; const auto on_collide_fn = [this, idx, xf, zf, ¤t](const auto &collision) { this->idx_hit = idx; #ifndef NDEBUG std::cout << "idx_hit set to " << idx_hit << std::endl; #endif this->mouse_hit = collision; this->camera_target.x = xf; this->camera_target.y = (current.nw + current.ne + current.sw + current.se) / 4.0F; this->camera_target.z = zf; if (idx != SURFACE_UNIT_WIDTH / 2 + (SURFACE_UNIT_HEIGHT / 2) * SURFACE_UNIT_WIDTH) { this->camera_pos = Vector3Add( Vector3Scale(Vector3Normalize(this->camera_target), 4.0F), this->camera_target); this->camera_pos.y += 4.0F; } else { this->camera_pos.x = 0.0F; this->camera_pos.y = this->camera_target.y + 4.0F; this->camera_pos.z = 0.0F; } }; if (auto bb_collision = GetRayCollisionBox(ray, surface_bbs[idx]); bb_collision.hit) { if (auto collision = GetRayCollisionTriangle(ray, nw, sw, ne); collision.hit) { on_collide_fn(collision.point); } else if (auto collision = GetRayCollisionTriangle(ray, ne, sw, se); collision.hit) { on_collide_fn(collision.point); } } } } camera_to_targets(dt); return false; } bool TRunnerScreen::draw() { BeginDrawing(); ClearBackground(PixelToColor(Pixel::PIXEL_SKY)); BeginMode3D(camera); for (unsigned int idx = 0; idx < SURFACE_UNIT_WIDTH * SURFACE_UNIT_HEIGHT; ++idx) { int x = idx % SURFACE_UNIT_WIDTH; int y = idx / SURFACE_UNIT_WIDTH; int ox = x - SURFACE_UNIT_WIDTH / 2; int oy = y - SURFACE_UNIT_HEIGHT / 2; float xf = (float)(x)-SURFACE_X_OFFSET; float zf = (float)(y)-SURFACE_Y_OFFSET; Color color = idx == idx_hit ? RAYWHITE : Color{(unsigned char)(200 + ox * 2), (unsigned char)(150 + oy * 2), 20, 255}; const auto ¤t = surface[idx].value(); DrawTriangle3D(Vector3{xf - 0.5F, current.nw, zf - 0.5F}, Vector3{xf - 0.5F, current.sw, zf + 0.5F}, Vector3{xf + 0.5F, current.ne, zf - 0.5F}, color); DrawTriangle3D(Vector3{xf + 0.5F, current.se, zf + 0.5F}, Vector3{xf + 0.5F, current.ne, zf - 0.5F}, Vector3{xf - 0.5F, current.sw, zf + 0.5F}, color); } // DrawModel(Model{.transform = TEMP_cube_model.transform * TEMP_matrix, // .meshCount = TEMP_cube_model.meshCount, // .materialCount = TEMP_cube_model.materialCount, // .meshes = TEMP_cube_model.meshes, // .materials = TEMP_cube_model.materials, // .meshMaterial = TEMP_cube_model.meshMaterial, // .boneCount = TEMP_cube_model.boneCount, // .bones = TEMP_cube_model.bones, // .bindPose = TEMP_cube_model.bindPose}, // Vector3{0.0F, 0.0F, -4.0F}, 1.0F, WHITE); // TODO DEBUG DrawLine3D(Vector3{0.0F, 3.0F, 0.0F}, mouse_hit, BLACK); EndMode3D(); EndDrawing(); return false; } Color TRunnerScreen::PixelToColor(Pixel p) { switch (p) { case PIXEL_BLANK: return Color{0, 0, 0, 0}; case PIXEL_BLACK: return Color{0, 0, 0, 255}; case PIXEL_RED: return Color{255, 50, 50, 255}; case PIXEL_GREEN: return Color{50, 255, 50, 255}; case PIXEL_BLUE: return Color{50, 50, 255, 255}; case PIXEL_YELLOW: return Color{255, 255, 0, 255}; case PIXEL_CYAN: return Color{0, 255, 255, 255}; case PIXEL_MAGENTA: return Color{255, 0, 255, 255}; case PIXEL_ORANGE: return Color{255, 200, 0, 255}; case PIXEL_BROWN: return Color{180, 130, 0, 255}; case PIXEL_TURQUOISE: return Color{0, 255, 200, 255}; case PIXEL_SKY: return Color{168, 178, 255, 255}; case PIXEL_WHITE: return Color{255, 255, 255, 255}; default: assert(!"unreachable"); return Color{0, 0, 0, 255}; } } void TRunnerScreen::camera_to_targets(float dt) { camera.position.x += (camera_pos.x - camera.position.x) * CAMERA_UPDATE_RATE * dt; camera.position.y += (camera_pos.y - camera.position.y) * CAMERA_UPDATE_RATE * dt; camera.position.z += (camera_pos.z - camera.position.z) * CAMERA_UPDATE_RATE * dt; camera.target.x += (camera_target.x - camera.target.x) * CAMERA_UPDATE_RATE * dt; camera.target.y += (camera_target.y - camera.target.y) * CAMERA_UPDATE_RATE * dt; camera.target.z += (camera_target.z - camera.target.z) * CAMERA_UPDATE_RATE * dt; }