#include "blue_noise.hpp"
-#include <random>
#include <cassert>
-#include <iostream>
+#include <cstdio>
#include <fstream>
+#include <iostream>
#include <memory>
+#include <random>
#include <string>
#include <unordered_set>
-#include <cstdio>
+#if DITHERING_OPENCL_ENABLED == 1
#include <CL/opencl.h>
+#endif
#include "image.hpp"
-
-image::Bl dither::blue_noise(int width, int height, int threads, bool use_opencl) {
-
+image::Bl dither::blue_noise(int width, int height, int threads,
+ bool use_opencl) {
bool using_opencl = false;
- if(use_opencl) {
+#if DITHERING_OPENCL_ENABLED == 1
+ if (use_opencl) {
// try to use OpenCL
do {
cl_device_id device;
int filter_size = (width + height) / 2;
err = clGetPlatformIDs(1, &platform, nullptr);
- if(err != CL_SUCCESS) {
+ if (err != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to identify a platform\n";
break;
}
- err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, nullptr);
- if(err != CL_SUCCESS) {
+ err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device,
+ nullptr);
+ if (err != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to get a device\n";
break;
}
- context = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &err);
+ context = clCreateContext(nullptr, 1, &device, nullptr, nullptr,
+ &err);
{
char buf[1024];
std::ifstream program_file("src/blue_noise.cl");
if (!program_file.good()) {
- std::cerr << "ERROR: Failed to read \"src/blue_noise.cl\" (not found?)\n";
+ std::cerr << "ERROR: Failed to read \"src/blue_noise.cl\" "
+ "(not found?)\n";
break;
}
std::string program_string;
- while(program_file.good()) {
+ while (program_file.good()) {
program_file.read(buf, 1024);
- if(int read_count = program_file.gcount(); read_count > 0) {
+ if (int read_count = program_file.gcount();
+ read_count > 0) {
program_string.append(buf, read_count);
}
}
const char *string_ptr = program_string.c_str();
std::size_t program_size = program_string.size();
- program = clCreateProgramWithSource(context, 1, (const char**)&string_ptr, &program_size, &err);
- if(err != CL_SUCCESS) {
+ program = clCreateProgramWithSource(context, 1,
+ (const char **)&string_ptr,
+ &program_size, &err);
+ if (err != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to create the program\n";
clReleaseContext(context);
break;
}
- err = clBuildProgram(program, 1, &device, nullptr, nullptr, nullptr);
- if(err != CL_SUCCESS) {
+ err = clBuildProgram(program, 1, &device, nullptr, nullptr,
+ nullptr);
+ if (err != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to build the program\n";
std::size_t log_size;
- clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, nullptr, &log_size);
- std::unique_ptr<char[]> log = std::make_unique<char[]>(log_size + 1);
+ clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
+ 0, nullptr, &log_size);
+ std::unique_ptr<char[]> log =
+ std::make_unique<char[]>(log_size + 1);
log[log_size] = 0;
- clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, log_size, log.get(), nullptr);
+ clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
+ log_size, log.get(), nullptr);
std::cerr << log.get() << std::endl;
clReleaseProgram(program);
std::cout << "OpenCL: Initialized, trying cl_impl..." << std::endl;
std::vector<unsigned int> result = internal::blue_noise_cl_impl(
- width, height, filter_size, context, device, program);
+ width, height, filter_size, context, device, program);
clReleaseProgram(program);
clReleaseContext(context);
- if(!result.empty()) {
+ if (!result.empty()) {
return internal::rangeToBl(result, width);
}
std::cout << "ERROR: Empty result\n";
} while (false);
}
+#else
+ std::clog << "WARNING: Not compiled with OpenCL support!\n";
+#endif
- if(!using_opencl) {
- std::cout << "OpenCL: Failed to setup/use or is not enabled, using regular impl..."
- << std::endl;
- return internal::rangeToBl(internal::blue_noise_impl(width, height, threads), width);
+ if (!using_opencl) {
+ std::cout << "OpenCL: Failed to setup/use or is not enabled, using "
+ "regular impl..."
+ << std::endl;
+ return internal::rangeToBl(
+ internal::blue_noise_impl(width, height, threads), width);
}
std::cout << "ERROR: Invalid state (end of blue_noise fn)\n";
return {};
}
-std::vector<unsigned int> dither::internal::blue_noise_impl(int width, int height, int threads) {
+std::vector<unsigned int> dither::internal::blue_noise_impl(int width,
+ int height,
+ int threads) {
int count = width * height;
std::vector<float> filter_out;
filter_out.resize(count);
pbp.resize(count);
#ifndef NDEBUG
- printf("Inserting %d pixels into image of max count %d\n", pixel_count, count);
+ printf("Inserting %d pixels into image of max count %d\n", pixel_count,
+ count);
// generate image from randomized pbp
FILE *random_noise_image = fopen("random_noise.pbm", "w");
fprintf(random_noise_image, "P1\n%d %d\n", width, height);
- for(int y = 0; y < height; ++y) {
- for(int x = 0; x < width; ++x) {
- fprintf(random_noise_image, "%d ", pbp[utility::twoToOne(x, y, width, height)] ? 1 : 0);
+ for (int y = 0; y < height; ++y) {
+ for (int x = 0; x < width; ++x) {
+ fprintf(random_noise_image, "%d ",
+ pbp[utility::twoToOne(x, y, width, height)] ? 1 : 0);
}
fputc('\n', random_noise_image);
}
fclose(random_noise_image);
#endif
-//#ifndef NDEBUG
+ // #ifndef NDEBUG
int iterations = 0;
-//#endif
+ // #endif
int filter_size = (width + height) / 2;
- std::unique_ptr<std::vector<float>> precomputed = std::make_unique<std::vector<float>>(internal::precompute_gaussian(filter_size));
+ std::unique_ptr<std::vector<float>> precomputed =
+ std::make_unique<std::vector<float>>(
+ internal::precompute_gaussian(filter_size));
- internal::compute_filter(pbp, width, height, count, filter_size,
- filter_out, precomputed.get(), threads);
+ internal::compute_filter(pbp, width, height, count, filter_size, filter_out,
+ precomputed.get(), threads);
#ifndef NDEBUG
internal::write_filter(filter_out, width, "filter_out_start.pgm");
#endif
std::cout << "Begin BinaryArray generation loop\n";
- while(true) {
+ while (true) {
#ifndef NDEBUG
-// if(++iterations % 10 == 0) {
- printf("Iteration %d\n", ++iterations);
+ // if(++iterations % 10 == 0) {
+ printf("Iteration %d\n", ++iterations);
// }
#endif
// get filter values
internal::compute_filter(pbp, width, height, count, filter_size,
- filter_out, precomputed.get(), threads);
+ filter_out, precomputed.get(), threads);
-//#ifndef NDEBUG
-// for(int i = 0; i < count; ++i) {
-// int x, y;
-// std::tie(x, y) = internal::oneToTwo(i, width);
-// printf("%d (%d, %d): %f\n", i, x, y, filter_out[i]);
-// }
-//#endif
+ // #ifndef NDEBUG
+ // for(int i = 0; i < count; ++i) {
+ // int x, y;
+ // std::tie(x, y) = internal::oneToTwo(i, width);
+ // printf("%d (%d, %d): %f\n", i, x, y, filter_out[i]);
+ // }
+ // #endif
int min, max;
std::tie(min, max) = internal::filter_minmax(filter_out, pbp);
// get filter values again
internal::compute_filter(pbp, width, height, count, filter_size,
- filter_out, precomputed.get(), threads);
+ filter_out, precomputed.get(), threads);
// get second buffer's min
int second_min;
- std::tie(second_min, std::ignore) = internal::filter_minmax(filter_out, pbp);
+ std::tie(second_min, std::ignore) =
+ internal::filter_minmax(filter_out, pbp);
- if(second_min == max) {
+ if (second_min == max) {
pbp[max] = true;
break;
} else {
pbp[second_min] = true;
}
- if(iterations % 100 == 0) {
+ if (iterations % 100 == 0) {
// generate blue_noise image from pbp
#ifndef NDEBUG
FILE *blue_noise_image = fopen("blue_noise.pbm", "w");
fprintf(blue_noise_image, "P1\n%d %d\n", width, height);
- for(int y = 0; y < height; ++y) {
- for(int x = 0; x < width; ++x) {
- fprintf(blue_noise_image, "%d ", pbp[utility::twoToOne(x, y, width, height)] ? 1 : 0);
+ for (int y = 0; y < height; ++y) {
+ for (int x = 0; x < width; ++x) {
+ fprintf(blue_noise_image, "%d ",
+ pbp[utility::twoToOne(x, y, width, height)] ? 1
+ : 0);
}
fputc('\n', blue_noise_image);
}
#endif
}
}
- internal::compute_filter(pbp, width, height, count, filter_size,
- filter_out, precomputed.get(), threads);
+ internal::compute_filter(pbp, width, height, count, filter_size, filter_out,
+ precomputed.get(), threads);
#ifndef NDEBUG
internal::write_filter(filter_out, width, "filter_out_final.pgm");
#endif
// generate blue_noise image from pbp
FILE *blue_noise_image = fopen("blue_noise.pbm", "w");
fprintf(blue_noise_image, "P1\n%d %d\n", width, height);
- for(int y = 0; y < height; ++y) {
- for(int x = 0; x < width; ++x) {
- fprintf(blue_noise_image, "%d ", pbp[utility::twoToOne(x, y, width, height)] ? 1 : 0);
+ for (int y = 0; y < height; ++y) {
+ for (int x = 0; x < width; ++x) {
+ fprintf(blue_noise_image, "%d ",
+ pbp[utility::twoToOne(x, y, width, height)] ? 1 : 0);
}
fputc('\n', blue_noise_image);
}
std::cout << i << ' ';
#endif
internal::compute_filter(pbp, width, height, count, filter_size,
- filter_out, precomputed.get(), threads);
- std::tie(std::ignore, max) = internal::filter_minmax(filter_out, pbp);
+ filter_out, precomputed.get(), threads);
+ std::tie(std::ignore, max) =
+ internal::filter_minmax(filter_out, pbp);
pbp[max] = false;
dither_array[max] = i;
}
pbp = pbp_copy;
}
std::cout << "\nRanking remainder of first half of pixels...\n";
- for (unsigned int i = pixel_count; i < (unsigned int)((count + 1) / 2); ++i) {
+ for (unsigned int i = pixel_count; i < (unsigned int)((count + 1) / 2);
+ ++i) {
#ifndef NDEBUG
std::cout << i << ' ';
#endif
internal::compute_filter(pbp, width, height, count, filter_size,
- filter_out, precomputed.get(), threads);
+ filter_out, precomputed.get(), threads);
std::tie(min, std::ignore) = internal::filter_minmax(filter_out, pbp);
pbp[min] = true;
dither_array[min] = i;
#ifndef NDEBUG
std::cout << i << ' ';
#endif
- for(unsigned int i = 0; i < pbp.size(); ++i) {
+ for (unsigned int i = 0; i < pbp.size(); ++i) {
reversed_pbp[i] = !pbp[i];
}
- internal::compute_filter(reversed_pbp, width, height, count, filter_size,
- filter_out, precomputed.get(), threads);
+ internal::compute_filter(reversed_pbp, width, height, count,
+ filter_size, filter_out, precomputed.get(),
+ threads);
std::tie(std::ignore, max) = internal::filter_minmax(filter_out, pbp);
pbp[max] = true;
dither_array[max] = i;
return dither_array;
}
+#if DITHERING_OPENCL_ENABLED == 1
std::vector<unsigned int> dither::internal::blue_noise_cl_impl(
- const int width, const int height, const int filter_size, cl_context context, cl_device_id device, cl_program program) {
+ const int width, const int height, const int filter_size,
+ cl_context context, cl_device_id device, cl_program program) {
cl_int err;
cl_kernel kernel;
cl_command_queue queue;
queue = clCreateCommandQueueWithProperties(context, device, nullptr, &err);
- d_filter_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY, count * sizeof(float), nullptr, nullptr);
- d_precomputed = clCreateBuffer(context, CL_MEM_READ_ONLY, precomputed.size() * sizeof(float), nullptr, nullptr);
- d_pbp = clCreateBuffer(context, CL_MEM_READ_ONLY, count * sizeof(int), nullptr, nullptr);
-
- err = clEnqueueWriteBuffer(queue, d_precomputed, CL_TRUE, 0, precomputed.size() * sizeof(float), &precomputed[0], 0, nullptr, nullptr);
- if(err != CL_SUCCESS) {
+ d_filter_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
+ count * sizeof(float), nullptr, nullptr);
+ d_precomputed = clCreateBuffer(context, CL_MEM_READ_ONLY,
+ precomputed.size() * sizeof(float), nullptr,
+ nullptr);
+ d_pbp = clCreateBuffer(context, CL_MEM_READ_ONLY, count * sizeof(int),
+ nullptr, nullptr);
+
+ err = clEnqueueWriteBuffer(queue, d_precomputed, CL_TRUE, 0,
+ precomputed.size() * sizeof(float),
+ &precomputed[0], 0, nullptr, nullptr);
+ if (err != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to write to d_precomputed buffer\n";
clReleaseMemObject(d_pbp);
clReleaseMemObject(d_precomputed);
}
kernel = clCreateKernel(program, "do_filter", &err);
- if(err != CL_SUCCESS) {
+ if (err != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to create kernel: ";
- switch(err) {
- case CL_INVALID_PROGRAM:
- std::cerr << "invalid program\n";
- break;
- case CL_INVALID_PROGRAM_EXECUTABLE:
- std::cerr << "invalid program executable\n";
- break;
- case CL_INVALID_KERNEL_NAME:
- std::cerr << "invalid kernel name\n";
- break;
- case CL_INVALID_KERNEL_DEFINITION:
- std::cerr << "invalid kernel definition\n";
- break;
- case CL_INVALID_VALUE:
- std::cerr << "invalid value\n";
- break;
- case CL_OUT_OF_RESOURCES:
- std::cerr << "out of resources\n";
- break;
- case CL_OUT_OF_HOST_MEMORY:
- std::cerr << "out of host memory\n";
- break;
- default:
- std::cerr << "unknown error\n";
- break;
+ switch (err) {
+ case CL_INVALID_PROGRAM:
+ std::cerr << "invalid program\n";
+ break;
+ case CL_INVALID_PROGRAM_EXECUTABLE:
+ std::cerr << "invalid program executable\n";
+ break;
+ case CL_INVALID_KERNEL_NAME:
+ std::cerr << "invalid kernel name\n";
+ break;
+ case CL_INVALID_KERNEL_DEFINITION:
+ std::cerr << "invalid kernel definition\n";
+ break;
+ case CL_INVALID_VALUE:
+ std::cerr << "invalid value\n";
+ break;
+ case CL_OUT_OF_RESOURCES:
+ std::cerr << "out of resources\n";
+ break;
+ case CL_OUT_OF_HOST_MEMORY:
+ std::cerr << "out of host memory\n";
+ break;
+ default:
+ std::cerr << "unknown error\n";
+ break;
}
clReleaseMemObject(d_pbp);
clReleaseMemObject(d_precomputed);
return {};
}
- if(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_filter_out) != CL_SUCCESS) {
+ if (clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_filter_out) !=
+ CL_SUCCESS) {
std::cerr << "OpenCL: Failed to set kernel arg 0\n";
clReleaseKernel(kernel);
clReleaseMemObject(d_pbp);
clReleaseCommandQueue(queue);
return {};
}
- if(clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_precomputed) != CL_SUCCESS) {
+ if (clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_precomputed) !=
+ CL_SUCCESS) {
std::cerr << "OpenCL: Failed to set kernel arg 1\n";
clReleaseKernel(kernel);
clReleaseMemObject(d_pbp);
clReleaseCommandQueue(queue);
return {};
}
- if(clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_pbp) != CL_SUCCESS) {
+ if (clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_pbp) != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to set kernel arg 2\n";
clReleaseKernel(kernel);
clReleaseMemObject(d_pbp);
clReleaseCommandQueue(queue);
return {};
}
- if(clSetKernelArg(kernel, 3, sizeof(int), &width) != CL_SUCCESS) {
+ if (clSetKernelArg(kernel, 3, sizeof(int), &width) != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to set kernel arg 3\n";
clReleaseKernel(kernel);
clReleaseMemObject(d_pbp);
clReleaseCommandQueue(queue);
return {};
}
- if(clSetKernelArg(kernel, 4, sizeof(int), &height) != CL_SUCCESS) {
+ if (clSetKernelArg(kernel, 4, sizeof(int), &height) != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to set kernel arg 4\n";
clReleaseKernel(kernel);
clReleaseMemObject(d_pbp);
}
if (filter_size % 2 == 0) {
int filter_size_odd = filter_size + 1;
- if(clSetKernelArg(kernel, 5, sizeof(int), &filter_size_odd) != CL_SUCCESS) {
+ if (clSetKernelArg(kernel, 5, sizeof(int), &filter_size_odd) !=
+ CL_SUCCESS) {
std::cerr << "OpenCL: Failed to set kernel arg 4\n";
clReleaseKernel(kernel);
clReleaseMemObject(d_pbp);
return {};
}
} else {
- if(clSetKernelArg(kernel, 5, sizeof(int), &filter_size) != CL_SUCCESS) {
+ if (clSetKernelArg(kernel, 5, sizeof(int), &filter_size) !=
+ CL_SUCCESS) {
std::cerr << "OpenCL: Failed to set kernel arg 4\n";
clReleaseKernel(kernel);
clReleaseMemObject(d_pbp);
}
}
- if(clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(std::size_t), &local_size, nullptr) != CL_SUCCESS) {
+ if (clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
+ sizeof(std::size_t), &local_size,
+ nullptr) != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to get work group size\n";
clReleaseKernel(kernel);
clReleaseMemObject(d_pbp);
clReleaseCommandQueue(queue);
return {};
}
- global_size = (std::size_t)std::ceil(count / (float)local_size) * local_size;
+ global_size =
+ (std::size_t)std::ceil(count / (float)local_size) * local_size;
- std::cout << "OpenCL: global = " << global_size << ", local = " << local_size
- << std::endl;
+ std::cout << "OpenCL: global = " << global_size
+ << ", local = " << local_size << std::endl;
std::vector<float> filter(count);
bool reversed_pbp = false;
const auto get_filter = [&queue, &kernel, &global_size, &local_size,
- &d_filter_out, &d_pbp, &pbp, &pbp_i, &count, &filter, &err, &reversed_pbp] () -> bool {
- for(unsigned int i = 0; i < pbp.size(); ++i) {
+ &d_filter_out, &d_pbp, &pbp, &pbp_i, &count,
+ &filter, &err, &reversed_pbp]() -> bool {
+ for (unsigned int i = 0; i < pbp.size(); ++i) {
if (reversed_pbp) {
pbp_i[i] = pbp[i] ? 0 : 1;
} else {
pbp_i[i] = pbp[i] ? 1 : 0;
}
}
- if(clEnqueueWriteBuffer(queue, d_pbp, CL_TRUE, 0, count * sizeof(int), &pbp_i[0], 0, nullptr, nullptr) != CL_SUCCESS) {
+ if (clEnqueueWriteBuffer(queue, d_pbp, CL_TRUE, 0, count * sizeof(int),
+ &pbp_i[0], 0, nullptr,
+ nullptr) != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to write to d_pbp buffer\n";
return false;
}
- if(err = clEnqueueNDRangeKernel(
- queue, kernel, 1, nullptr, &global_size, &local_size,
- 0, nullptr, nullptr); err != CL_SUCCESS) {
+ if (err = clEnqueueNDRangeKernel(queue, kernel, 1, nullptr,
+ &global_size, &local_size, 0, nullptr,
+ nullptr);
+ err != CL_SUCCESS) {
std::cerr << "OpenCL: Failed to enqueue task: ";
- switch(err) {
- case CL_INVALID_PROGRAM_EXECUTABLE:
- std::cerr << "invalid program executable\n";
- break;
- case CL_INVALID_COMMAND_QUEUE:
- std::cerr << "invalid command queue\n";
- break;
- case CL_INVALID_KERNEL:
- std::cerr << "invalid kernel\n";
- break;
- case CL_INVALID_CONTEXT:
- std::cerr << "invalid context\n";
- break;
- case CL_INVALID_KERNEL_ARGS:
- std::cerr << "invalid kernel args\n";
- break;
- case CL_INVALID_WORK_DIMENSION:
- std::cerr << "invalid work dimension\n";
- break;
- case CL_INVALID_GLOBAL_WORK_SIZE:
- std::cerr << "invalid global work size\n";
- break;
- case CL_INVALID_GLOBAL_OFFSET:
- std::cerr << "invalid global offset\n";
- break;
- case CL_INVALID_WORK_GROUP_SIZE:
- std::cerr << "invalid work group size\n";
- break;
- case CL_INVALID_WORK_ITEM_SIZE:
- std::cerr << "invalid work item size\n";
- break;
- case CL_MISALIGNED_SUB_BUFFER_OFFSET:
- std::cerr << "misaligned sub buffer offset\n";
- break;
- default:
- std::cerr << "Unknown\n";
- break;
+ switch (err) {
+ case CL_INVALID_PROGRAM_EXECUTABLE:
+ std::cerr << "invalid program executable\n";
+ break;
+ case CL_INVALID_COMMAND_QUEUE:
+ std::cerr << "invalid command queue\n";
+ break;
+ case CL_INVALID_KERNEL:
+ std::cerr << "invalid kernel\n";
+ break;
+ case CL_INVALID_CONTEXT:
+ std::cerr << "invalid context\n";
+ break;
+ case CL_INVALID_KERNEL_ARGS:
+ std::cerr << "invalid kernel args\n";
+ break;
+ case CL_INVALID_WORK_DIMENSION:
+ std::cerr << "invalid work dimension\n";
+ break;
+ case CL_INVALID_GLOBAL_WORK_SIZE:
+ std::cerr << "invalid global work size\n";
+ break;
+ case CL_INVALID_GLOBAL_OFFSET:
+ std::cerr << "invalid global offset\n";
+ break;
+ case CL_INVALID_WORK_GROUP_SIZE:
+ std::cerr << "invalid work group size\n";
+ break;
+ case CL_INVALID_WORK_ITEM_SIZE:
+ std::cerr << "invalid work item size\n";
+ break;
+ case CL_MISALIGNED_SUB_BUFFER_OFFSET:
+ std::cerr << "misaligned sub buffer offset\n";
+ break;
+ default:
+ std::cerr << "Unknown\n";
+ break;
}
return false;
}
clFinish(queue);
- clEnqueueReadBuffer(queue, d_filter_out, CL_TRUE, 0, count * sizeof(float), &filter[0], 0, nullptr, nullptr);
+ clEnqueueReadBuffer(queue, d_filter_out, CL_TRUE, 0,
+ count * sizeof(float), &filter[0], 0, nullptr,
+ nullptr);
return true;
};
{
#ifndef NDEBUG
- printf("Inserting %d pixels into image of max count %d\n", pixel_count, count);
+ printf("Inserting %d pixels into image of max count %d\n", pixel_count,
+ count);
// generate image from randomized pbp
FILE *random_noise_image = fopen("random_noise.pbm", "w");
fprintf(random_noise_image, "P1\n%d %d\n", width, height);
- for(int y = 0; y < height; ++y) {
- for(int x = 0; x < width; ++x) {
- fprintf(random_noise_image, "%d ", pbp[utility::twoToOne(x, y, width, height)] ? 1 : 0);
+ for (int y = 0; y < height; ++y) {
+ for (int x = 0; x < width; ++x) {
+ fprintf(random_noise_image, "%d ",
+ pbp[utility::twoToOne(x, y, width, height)] ? 1 : 0);
}
fputc('\n', random_noise_image);
}
#endif
}
- if(!get_filter()) {
+ if (!get_filter()) {
std::cerr << "OpenCL: Failed to execute do_filter (at start)\n";
clReleaseKernel(kernel);
clReleaseMemObject(d_pbp);
int iterations = 0;
std::cout << "Begin BinaryArray generation loop\n";
- while(true) {
+ while (true) {
#ifndef NDEBUG
printf("Iteration %d\n", ++iterations);
#endif
- if(!get_filter()) {
+ if (!get_filter()) {
std::cerr << "OpenCL: Failed to execute do_filter\n";
break;
}
pbp[max] = false;
- if(!get_filter()) {
+ if (!get_filter()) {
std::cerr << "OpenCL: Failed to execute do_filter\n";
break;
}
// get second buffer's min
int second_min;
- std::tie(second_min, std::ignore) = internal::filter_minmax(filter, pbp);
+ std::tie(second_min, std::ignore) =
+ internal::filter_minmax(filter, pbp);
- if(second_min == max) {
+ if (second_min == max) {
pbp[max] = true;
break;
} else {
pbp[second_min] = true;
}
- if(iterations % 100 == 0) {
+ if (iterations % 100 == 0) {
#ifndef NDEBUG
std::cout << "max was " << max << ", second_min is " << second_min
- << std::endl;
+ << std::endl;
// generate blue_noise image from pbp
FILE *blue_noise_image = fopen("blue_noise.pbm", "w");
fprintf(blue_noise_image, "P1\n%d %d\n", width, height);
- for(int y = 0; y < height; ++y) {
- for(int x = 0; x < width; ++x) {
- fprintf(blue_noise_image, "%d ", pbp[utility::twoToOne(x, y, width, height)] ? 1 : 0);
+ for (int y = 0; y < height; ++y) {
+ for (int x = 0; x < width; ++x) {
+ fprintf(blue_noise_image, "%d ",
+ pbp[utility::twoToOne(x, y, width, height)] ? 1
+ : 0);
}
fputc('\n', blue_noise_image);
}
}
}
- if(!get_filter()) {
+ if (!get_filter()) {
std::cerr << "OpenCL: Failed to execute do_filter (at end)\n";
} else {
#ifndef NDEBUG
internal::write_filter(filter, width, "filter_out_final.pgm");
FILE *blue_noise_image = fopen("blue_noise.pbm", "w");
fprintf(blue_noise_image, "P1\n%d %d\n", width, height);
- for(int y = 0; y < height; ++y) {
- for(int x = 0; x < width; ++x) {
- fprintf(blue_noise_image, "%d ", pbp[utility::twoToOne(x, y, width, height)] ? 1 : 0);
+ for (int y = 0; y < height; ++y) {
+ for (int x = 0; x < width; ++x) {
+ fprintf(blue_noise_image, "%d ",
+ pbp[utility::twoToOne(x, y, width, height)] ? 1 : 0);
}
fputc('\n', blue_noise_image);
}
#ifndef NDEBUG
{
image::Bl pbp_image = toBl(pbp, width);
- pbp_image.writeToFile(image::file_type::PNG, true, "debug_pbp_before.png");
+ pbp_image.writeToFile(image::file_type::PNG, true,
+ "debug_pbp_before.png");
}
#endif
pbp = pbp_copy;
#ifndef NDEBUG
image::Bl min_pixels = internal::rangeToBl(dither_array, width);
- min_pixels.writeToFile(image::file_type::PNG, true, "da_min_pixels.png");
+ min_pixels.writeToFile(image::file_type::PNG, true,
+ "da_min_pixels.png");
#endif
}
std::cout << "\nRanking remainder of first half of pixels...\n";
- for (unsigned int i = pixel_count; i < (unsigned int)((count + 1) / 2); ++i) {
+ for (unsigned int i = pixel_count; i < (unsigned int)((count + 1) / 2);
+ ++i) {
#ifndef NDEBUG
std::cout << i << ' ';
#endif
#ifndef NDEBUG
{
image::Bl min_pixels = internal::rangeToBl(dither_array, width);
- min_pixels.writeToFile(image::file_type::PNG, true, "da_mid_pixels.png");
+ min_pixels.writeToFile(image::file_type::PNG, true,
+ "da_mid_pixels.png");
get_filter();
internal::write_filter(filter, width, "filter_mid.pgm");
image::Bl pbp_image = toBl(pbp, width);
get_filter();
internal::write_filter(filter, width, "filter_after.pgm");
image::Bl pbp_image = toBl(pbp, width);
- pbp_image.writeToFile(image::file_type::PNG, true, "debug_pbp_after.png");
+ pbp_image.writeToFile(image::file_type::PNG, true,
+ "debug_pbp_after.png");
}
#endif
clReleaseCommandQueue(queue);
return dither_array;
}
+#endif