Impl nested threaded calls

More testing is probably required to make sure it works properly.
This commit is contained in:
Stephen Seo 2022-06-15 21:15:34 +09:00
parent 3286aa5a74
commit 292bffb636
5 changed files with 553 additions and 201 deletions

212
.clang-format Normal file
View file

@ -0,0 +1,212 @@
---
Language: Cpp
# BasedOnStyle: Google
AccessModifierOffset: -1
AlignAfterOpenBracket: Align
AlignArrayOfStructures: None
AlignConsecutiveMacros: None
AlignConsecutiveAssignments: None
AlignConsecutiveBitFields: None
AlignConsecutiveDeclarations: None
AlignEscapedNewlines: Left
AlignOperands: Align
AlignTrailingComments: true
AllowAllArgumentsOnNextLine: true
AllowAllConstructorInitializersOnNextLine: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortEnumsOnASingleLine: true
AllowShortBlocksOnASingleLine: Never
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: All
AllowShortLambdasOnASingleLine: All
AllowShortIfStatementsOnASingleLine: WithoutElse
AllowShortLoopsOnASingleLine: true
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: true
AlwaysBreakTemplateDeclarations: Yes
AttributeMacros:
- __capability
BinPackArguments: true
BinPackParameters: true
BraceWrapping:
AfterCaseLabel: false
AfterClass: false
AfterControlStatement: Never
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
AfterExternBlock: false
BeforeCatch: false
BeforeElse: false
BeforeLambdaBody: false
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakBeforeBinaryOperators: None
BreakBeforeConceptDeclarations: true
BreakBeforeBraces: Attach
BreakBeforeInheritanceComma: false
BreakInheritanceList: BeforeColon
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BreakConstructorInitializers: BeforeColon
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true
ColumnLimit: 80
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DeriveLineEnding: true
DerivePointerAlignment: true
DisableFormat: false
EmptyLineAfterAccessModifier: Never
EmptyLineBeforeAccessModifier: LogicalBlock
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
ForEachMacros:
- foreach
- Q_FOREACH
- BOOST_FOREACH
IfMacros:
- KJ_IF_MAYBE
IncludeBlocks: Regroup
IncludeCategories:
- Regex: '^<ext/.*\.h>'
Priority: 2
SortPriority: 0
CaseSensitive: false
- Regex: '^<.*\.h>'
Priority: 1
SortPriority: 0
CaseSensitive: false
- Regex: '^<.*'
Priority: 2
SortPriority: 0
CaseSensitive: false
- Regex: '.*'
Priority: 3
SortPriority: 0
CaseSensitive: false
IncludeIsMainRegex: '([-_](test|unittest))?$'
IncludeIsMainSourceRegex: ''
IndentAccessModifiers: false
IndentCaseLabels: true
IndentCaseBlocks: false
IndentGotoLabels: true
IndentPPDirectives: None
IndentExternBlock: AfterExternBlock
IndentRequires: false
IndentWidth: 4
IndentWrappedFunctionNames: false
InsertTrailingCommas: None
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: false
LambdaBodyIndentation: Signature
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBinPackProtocolList: Never
ObjCBlockIndentWidth: 4
ObjCBreakBeforeNestedBlockParam: true
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: true
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyBreakTemplateDeclaration: 10
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 200
PenaltyIndentedWhitespace: 0
PointerAlignment: Left
PPIndentWidth: -1
RawStringFormats:
- Language: Cpp
Delimiters:
- cc
- CC
- cpp
- Cpp
- CPP
- 'c++'
- 'C++'
CanonicalDelimiter: ''
BasedOnStyle: google
- Language: TextProto
Delimiters:
- pb
- PB
- proto
- PROTO
EnclosingFunctions:
- EqualsProto
- EquivToProto
- PARSE_PARTIAL_TEXT_PROTO
- PARSE_TEST_PROTO
- PARSE_TEXT_PROTO
- ParseTextOrDie
- ParseTextProtoOrDie
- ParseTestProto
- ParsePartialTestProto
CanonicalDelimiter: pb
BasedOnStyle: google
ReferenceAlignment: Pointer
ReflowComments: true
ShortNamespaceLines: 1
SortIncludes: CaseSensitive
SortJavaStaticImport: Before
SortUsingDeclarations: true
SpaceAfterCStyleCast: false
SpaceAfterLogicalNot: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeCaseColon: false
SpaceBeforeCpp11BracedList: false
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeParens: ControlStatements
SpaceAroundPointerQualifiers: Default
SpaceBeforeRangeBasedForLoopColon: true
SpaceInEmptyBlock: false
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 2
SpacesInAngles: Never
SpacesInConditionalStatement: false
SpacesInContainerLiterals: true
SpacesInCStyleCastParentheses: false
SpacesInLineCommentPrefix:
Minimum: 1
Maximum: -1
SpacesInParentheses: false
SpacesInSquareBrackets: false
SpaceBeforeSquareBrackets: false
BitFieldColonSpacing: Both
Standard: Auto
StatementAttributeLikeMacros:
- Q_EMIT
StatementMacros:
- Q_UNUSED
- QT_REQUIRE_VERSION
TabWidth: 4
UseCRLF: false
UseTab: Never
WhitespaceSensitiveMacros:
- STRINGIZE
- PP_STRINGIZE
- BOOST_PP_STRINGIZE
- NS_SWIFT_NAME
- CF_SWIFT_NAME
...

View file

@ -7,6 +7,7 @@
#ifndef EC_MANAGER_HPP
#define EC_MANAGER_HPP
#include <chrono>
#define EC_INIT_ENTITIES_SIZE 256
#define EC_GROW_SIZE_AMOUNT 256
@ -107,6 +108,10 @@ namespace EC
std::vector<std::size_t> deferredDeletions;
std::mutex deferredDeletionsMutex;
std::vector<std::size_t> idStack;
std::size_t idStackCounter;
std::mutex idStackMutex;
public:
// section for "temporary" structures {{{
/// Temporary struct used internally by ThreadPool
@ -196,7 +201,9 @@ namespace EC
The default capacity is set with macro EC_INIT_ENTITIES_SIZE,
and will grow by amounts of EC_GROW_SIZE_AMOUNT when needed.
*/
Manager()
Manager() :
threadPool{},
idStackCounter(0)
{
resize(EC_INIT_ENTITIES_SIZE);
if(ThreadCount >= 2) {
@ -206,6 +213,14 @@ namespace EC
deferringDeletions.store(0);
}
~Manager() {
if (threadPool) {
while(!threadPool->isNotRunning()) {
std::this_thread::sleep_for(std::chrono::microseconds(30));
}
}
}
private:
void resize(std::size_t newCapacity)
{
@ -750,6 +765,13 @@ namespace EC
void* userData = nullptr,
const bool useThreadPool = false)
{
std::size_t current_id;
{
// push to idStack "call stack"
std::lock_guard<std::mutex> lock(idStackMutex);
current_id = idStackCounter++;
idStack.push_back(current_id);
}
deferringDeletions.fetch_add(1);
using SignatureComponents =
typename EC::Meta::Matching<Signature, ComponentsList>::type;
@ -826,9 +848,21 @@ namespace EC
delete data;
}, fnDataAr[i]);
}
threadPool->easyWakeAndWait();
threadPool->easyStartAndWait();
}
// pop from idStack "call stack"
do {
{
std::lock_guard<std::mutex> lock(idStackMutex);
if (idStack.back() == current_id) {
idStack.pop_back();
break;
}
}
std::this_thread::sleep_for(std::chrono::microseconds(15));
} while (true);
handleDeferredDeletions();
}
@ -878,6 +912,13 @@ namespace EC
void* userData = nullptr,
const bool useThreadPool = false)
{
std::size_t current_id;
{
// push to idStack "call stack"
std::lock_guard<std::mutex> lock(idStackMutex);
current_id = idStackCounter++;
idStack.push_back(current_id);
}
deferringDeletions.fetch_add(1);
using SignatureComponents =
typename EC::Meta::Matching<Signature, ComponentsList>::type;
@ -951,9 +992,21 @@ namespace EC
}
}, &fnDataAr[i]);
}
threadPool->easyWakeAndWait();
threadPool->easyStartAndWait();
}
// pop from idStack "call stack"
do {
{
std::lock_guard<std::mutex> lock(idStackMutex);
if (idStack.back() == current_id) {
idStack.pop_back();
break;
}
}
std::this_thread::sleep_for(std::chrono::microseconds(15));
} while (true);
handleDeferredDeletions();
}
@ -1099,7 +1152,7 @@ namespace EC
}
}, &fnDataAr[i]);
}
threadPool->easyWakeAndWait();
threadPool->easyStartAndWait();
}
})));
@ -1180,7 +1233,7 @@ namespace EC
}
}, &fnDataAr[i]);
}
threadPool->easyWakeAndWait();
threadPool->easyStartAndWait();
}
return matchingV;
@ -1483,6 +1536,13 @@ namespace EC
void* userData = nullptr,
const bool useThreadPool = false)
{
std::size_t current_id;
{
// push to idStack "call stack"
std::lock_guard<std::mutex> lock(idStackMutex);
current_id = idStackCounter++;
idStack.push_back(current_id);
}
deferringDeletions.fetch_add(1);
std::vector<std::vector<std::size_t> >
multiMatchingEntities(SigList::size);
@ -1565,7 +1625,7 @@ namespace EC
}
}, &fnDataAr[i]);
}
threadPool->easyWakeAndWait();
threadPool->easyStartAndWait();
}
// call functions on matching entities
@ -1630,11 +1690,23 @@ namespace EC
}
}, &fnDataAr[i]);
}
threadPool->easyWakeAndWait();
threadPool->easyStartAndWait();
}
}
);
// pop from idStack "call stack"
do {
{
std::lock_guard<std::mutex> lock(idStackMutex);
if (idStack.back() == current_id) {
idStack.pop_back();
break;
}
}
std::this_thread::sleep_for(std::chrono::microseconds(15));
} while (true);
handleDeferredDeletions();
}
@ -1694,6 +1766,13 @@ namespace EC
void* userData = nullptr,
const bool useThreadPool = false)
{
std::size_t current_id;
{
// push to idStack "call stack"
std::lock_guard<std::mutex> lock(idStackMutex);
current_id = idStackCounter++;
idStack.push_back(current_id);
}
deferringDeletions.fetch_add(1);
std::vector<std::vector<std::size_t> > multiMatchingEntities(
SigList::size);
@ -1776,7 +1855,7 @@ namespace EC
}
}, &fnDataAr[i]);
}
threadPool->easyWakeAndWait();
threadPool->easyStartAndWait();
}
// call functions on matching entities
@ -1846,11 +1925,23 @@ namespace EC
}
}, &fnDataAr[i]);
}
threadPool->easyWakeAndWait();
threadPool->easyStartAndWait();
}
}
);
// pop from idStack "call stack"
do {
{
std::lock_guard<std::mutex> lock(idStackMutex);
if (idStack.back() == current_id) {
idStack.pop_back();
break;
}
}
std::this_thread::sleep_for(std::chrono::microseconds(15));
} while (true);
handleDeferredDeletions();
}
@ -1879,6 +1970,13 @@ namespace EC
void forMatchingSimple(ForMatchingFn fn,
void *userData = nullptr,
const bool useThreadPool = false) {
std::size_t current_id;
{
// push to idStack "call stack"
std::lock_guard<std::mutex> lock(idStackMutex);
current_id = idStackCounter++;
idStack.push_back(current_id);
}
deferringDeletions.fetch_add(1);
const BitsetType signatureBitset =
BitsetType::template generateBitset<Signature>();
@ -1934,9 +2032,21 @@ namespace EC
delete data;
}, fnDataAr[i]);
}
threadPool->easyWakeAndWait();
threadPool->easyStartAndWait();
}
// pop from idStack "call stack"
do {
{
std::lock_guard<std::mutex> lock(idStackMutex);
if (idStack.back() == current_id) {
idStack.pop_back();
break;
}
}
std::this_thread::sleep_for(std::chrono::microseconds(15));
} while (true);
handleDeferredDeletions();
}
@ -1963,6 +2073,14 @@ namespace EC
ForMatchingFn fn,
void* userData = nullptr,
const bool useThreadPool = false) {
std::size_t current_id;
{
// push to idStack "call stack"
std::lock_guard<std::mutex> lock(idStackMutex);
current_id = idStackCounter++;
idStack.push_back(current_id);
}
deferringDeletions.fetch_add(1);
if(!useThreadPool || !threadPool) {
bool isValid;
@ -2031,9 +2149,21 @@ namespace EC
}
}, &fnDataAr[i]);
}
threadPool->easyWakeAndWait();
threadPool->easyStartAndWait();
}
// pop from idStack "call stack"
do {
{
std::lock_guard<std::mutex> lock(idStackMutex);
if (idStack.back() == current_id) {
idStack.pop_back();
break;
}
}
std::this_thread::sleep_for(std::chrono::microseconds(15));
} while (true);
handleDeferredDeletions();
}
};

View file

@ -1,99 +1,52 @@
#ifndef EC_META_SYSTEM_THREADPOOL_HPP
#define EC_META_SYSTEM_THREADPOOL_HPP
#include <type_traits>
#include <vector>
#include <thread>
#include <atomic>
#include <mutex>
#include <condition_variable>
#include <queue>
#include <functional>
#include <tuple>
#include <chrono>
#include <unordered_set>
#include <deque>
#include <functional>
#include <list>
#include <memory>
#include <mutex>
#include <queue>
#include <thread>
#include <tuple>
#include <vector>
#ifndef NDEBUG
# include <iostream>
#include <iostream>
#endif
namespace EC {
namespace Internal {
using TPFnType = std::function<void(void*)>;
using TPTupleType = std::tuple<TPFnType, void*>;
using TPQueueType = std::queue<TPTupleType>;
template <unsigned int SIZE>
void thread_fn(std::atomic_bool *isAlive,
std::condition_variable *cv,
std::mutex *cvMutex,
Internal::TPQueueType *fnQueue,
std::mutex *queueMutex,
std::atomic_int *waitCount) {
bool hasFn = false;
Internal::TPTupleType fnTuple;
while(isAlive->load()) {
hasFn = false;
{
std::lock_guard<std::mutex> lock(*queueMutex);
if(!fnQueue->empty()) {
fnTuple = fnQueue->front();
fnQueue->pop();
hasFn = true;
}
}
if(hasFn) {
std::get<0>(fnTuple)(std::get<1>(fnTuple));
continue;
}
waitCount->fetch_add(1);
{
std::unique_lock<std::mutex> lock(*cvMutex);
cv->wait(lock);
}
waitCount->fetch_sub(1);
}
}
using TPFnType = std::function<void(void *)>;
using TPTupleType = std::tuple<TPFnType, void *>;
using TPQueueType = std::queue<TPTupleType>;
using ThreadPtr = std::unique_ptr<std::thread>;
using ThreadStackType = std::vector<std::tuple<ThreadPtr, std::thread::id>>;
using ThreadStacksType = std::deque<ThreadStackType>;
using ThreadStacksMutexesT = std::deque<std::mutex>;
using ThreadCountersT = std::deque<std::atomic_uint>;
using PointersT =
std::tuple<ThreadStackType *, std::mutex *, std::atomic_uint *>;
} // namespace Internal
/*!
\brief Implementation of a Thread Pool.
Note that if SIZE is less than 2, then ThreadPool will not create threads and
run queued functions on the calling thread.
Note that if SIZE is less than 2, then ThreadPool will not create threads
and run queued functions on the calling thread.
*/
template <unsigned int SIZE>
template <unsigned int MAXSIZE>
class ThreadPool {
public:
ThreadPool() {
waitCount.store(0);
extraThreadCount.store(0);
isAlive.store(true);
if(SIZE >= 2) {
for(unsigned int i = 0; i < SIZE; ++i) {
threads.emplace_back(Internal::thread_fn<SIZE>,
&isAlive,
&cv,
&cvMutex,
&fnQueue,
&queueMutex,
&waitCount);
threadsIDs.insert(threads.back().get_id());
}
}
}
public:
ThreadPool()
: threadStacks{}, threadStackMutexes{}, fnQueue{}, queueMutex{} {}
~ThreadPool() {
if(SIZE >= 2) {
isAlive.store(false);
std::this_thread::sleep_for(std::chrono::milliseconds(20));
cv.notify_all();
for(auto &thread : threads) {
thread.join();
}
std::this_thread::sleep_for(std::chrono::milliseconds(20));
while (!isNotRunning()) {
std::this_thread::sleep_for(std::chrono::microseconds(30));
}
}
@ -104,87 +57,97 @@ public:
waiting threads which will start pulling functions from the queue to be
called.
*/
void queueFn(std::function<void(void*)>&& fn, void *ud = nullptr) {
void queueFn(std::function<void(void *)> &&fn, void *ud = nullptr) {
std::lock_guard<std::mutex> lock(queueMutex);
fnQueue.emplace(std::make_tuple(fn, ud));
}
/*!
\brief Wakes waiting threads to start running queued functions.
void startThreads() {
if (MAXSIZE >= 2) {
checkStacks();
auto pointers = newStackEntry();
Internal::ThreadStackType *threadStack = std::get<0>(pointers);
std::mutex *threadStackMutex = std::get<1>(pointers);
std::atomic_uint *aCounter = std::get<2>(pointers);
for (unsigned int i = 0; i < MAXSIZE; ++i) {
std::thread *newThread = new std::thread(
[](Internal::ThreadStackType *threadStack,
std::mutex *threadStackMutex,
Internal::TPQueueType *fnQueue, std::mutex *queueMutex,
std::atomic_uint *initCount) {
// add id to idStack "call stack"
{
std::lock_guard<std::mutex> lock(*threadStackMutex);
threadStack->push_back(
{Internal::ThreadPtr(nullptr),
std::this_thread::get_id()});
}
If SIZE is less than 2, then this function call will block until all the
queued functions have been executed on the calling thread.
++(*initCount);
If SIZE is 2 or greater, then this function will return immediately after
waking one or all threads, depending on the given boolean parameter.
*/
void wakeThreads(const bool wakeAll = true) {
if(SIZE >= 2) {
// wake threads to pull functions from queue and run them
if(wakeAll) {
cv.notify_all();
// fetch queued fns and execute them
// fnTuples must live until end of function
std::list<Internal::TPTupleType> fnTuples;
do {
bool fnFound = false;
{
std::lock_guard<std::mutex> lock(*queueMutex);
if (!fnQueue->empty()) {
fnTuples.emplace_back(
std::move(fnQueue->front()));
fnQueue->pop();
fnFound = true;
}
}
if (fnFound) {
std::get<0>(fnTuples.back())(
std::get<1>(fnTuples.back()));
} else {
cv.notify_one();
break;
}
} while (true);
// check if all threads are running a task, and spawn a new thread
// if this is the case
Internal::TPTupleType fnTuple;
bool hasFn = false;
if (waitCount.load(std::memory_order_relaxed) == 0) {
std::lock_guard<std::mutex> queueLock(queueMutex);
if (!fnQueue.empty()) {
fnTuple = fnQueue.front();
fnQueue.pop();
hasFn = true;
// pop id from idStack "call stack"
do {
std::this_thread::sleep_for(
std::chrono::microseconds(15));
if (initCount->load() != MAXSIZE) {
continue;
}
{
std::lock_guard<std::mutex> lock(
*threadStackMutex);
if (std::get<1>(threadStack->back()) ==
std::this_thread::get_id()) {
if (!std::get<0>(threadStack->back())) {
continue;
}
std::get<0>(threadStack->back())->detach();
threadStack->pop_back();
if (threadStack->empty()) {
initCount->store(0);
}
break;
}
}
if (hasFn) {
#ifndef NDEBUG
std::cout << "Spawning extra thread...\n";
#endif
extraThreadCount.fetch_add(1);
std::thread newThread = std::thread(
[] (Internal::TPTupleType &&tuple, std::atomic_int *count) {
std::get<0>(tuple)(std::get<1>(tuple));
#ifndef NDEBUG
std::cout << "Stopping extra thread...\n";
#endif
count->fetch_sub(1);
} while (true);
},
std::move(fnTuple), &extraThreadCount);
newThread.detach();
threadStack, threadStackMutex, &fnQueue, &queueMutex,
aCounter);
while (aCounter->load() != i + 1) {
std::this_thread::sleep_for(std::chrono::microseconds(15));
}
std::lock_guard<std::mutex> stackLock(*threadStackMutex);
std::get<0>(threadStack->at(i)).reset(newThread);
}
while (aCounter->load() != MAXSIZE) {
std::this_thread::sleep_for(std::chrono::microseconds(15));
}
} else {
sequentiallyRunTasks();
}
}
/*!
\brief Gets the number of waiting threads.
If all threads are waiting, this should equal ThreadCount.
If SIZE is less than 2, then this will always return 0.
*/
int getWaitCount() {
return waitCount.load(std::memory_order_relaxed);
}
/*!
\brief Returns true if all threads are waiting.
If SIZE is less than 2, then this will always return true.
*/
bool isAllThreadsWaiting() {
if(SIZE >= 2) {
return waitCount.load(std::memory_order_relaxed) == SIZE;
} else {
return true;
}
}
/*!
\brief Returns true if the function queue is empty.
*/
@ -196,43 +159,54 @@ public:
/*!
\brief Returns the ThreadCount that this class was created with.
*/
constexpr unsigned int getThreadCount() {
return SIZE;
constexpr unsigned int getMaxThreadCount() { return MAXSIZE; }
void easyStartAndWait() {
if (MAXSIZE >= 2) {
startThreads();
do {
std::this_thread::sleep_for(std::chrono::microseconds(30));
bool isQueueEmpty = false;
{
std::lock_guard<std::mutex> lock(queueMutex);
isQueueEmpty = fnQueue.empty();
}
/*!
\brief Wakes all threads and blocks until all queued tasks are finished.
If SIZE is less than 2, then this function call will block until all the
queued functions have been executed on the calling thread.
If SIZE is 2 or greater, then this function will block until all the
queued functions have been executed by the threads in the thread pool.
*/
void easyWakeAndWait() {
if(SIZE >= 2) {
do {
wakeThreads();
std::this_thread::sleep_for(std::chrono::microseconds(150));
} while(!isQueueEmpty()
|| (threadsIDs.find(std::this_thread::get_id()) != threadsIDs.end()
&& extraThreadCount.load(std::memory_order_relaxed) != 0));
// } while(!isQueueEmpty() || !isAllThreadsWaiting());
if (isQueueEmpty) {
break;
}
} while (true);
} else {
sequentiallyRunTasks();
}
}
private:
std::vector<std::thread> threads;
std::unordered_set<std::thread::id> threadsIDs;
std::atomic_bool isAlive;
std::condition_variable cv;
std::mutex cvMutex;
bool isNotRunning() {
std::lock_guard<std::mutex> lock(dequesMutex);
auto tIter = threadStacks.begin();
auto mIter = threadStackMutexes.begin();
while (tIter != threadStacks.end() &&
mIter != threadStackMutexes.end()) {
{
std::lock_guard<std::mutex> lock(*mIter);
if (!tIter->empty()) {
return false;
}
}
++tIter;
++mIter;
}
return true;
}
private:
Internal::ThreadStacksType threadStacks;
Internal::ThreadStacksMutexesT threadStackMutexes;
Internal::TPQueueType fnQueue;
std::mutex queueMutex;
std::atomic_int waitCount;
std::atomic_int extraThreadCount;
Internal::ThreadCountersT threadCounters;
std::mutex dequesMutex;
void sequentiallyRunTasks() {
// pull functions from queue and run them on current thread
@ -241,7 +215,7 @@ private:
do {
{
std::lock_guard<std::mutex> lock(queueMutex);
if(!fnQueue.empty()) {
if (!fnQueue.empty()) {
hasFn = true;
fnTuple = fnQueue.front();
fnQueue.pop();
@ -249,12 +223,48 @@ private:
hasFn = false;
}
}
if(hasFn) {
if (hasFn) {
std::get<0>(fnTuple)(std::get<1>(fnTuple));
}
} while(hasFn);
} while (hasFn);
}
void checkStacks() {
std::lock_guard<std::mutex> lock(dequesMutex);
if (threadStacks.empty()) {
return;
}
bool erased = false;
do {
erased = false;
{
std::lock_guard<std::mutex> lock(threadStackMutexes.front());
if (threadStacks.front().empty()) {
threadStacks.pop_front();
threadCounters.pop_front();
erased = true;
}
}
if (erased) {
threadStackMutexes.pop_front();
} else {
break;
}
} while (!threadStacks.empty() && !threadStackMutexes.empty() &&
!threadCounters.empty());
}
Internal::PointersT newStackEntry() {
std::lock_guard<std::mutex> lock(dequesMutex);
threadStacks.emplace_back();
threadStackMutexes.emplace_back();
threadCounters.emplace_back();
threadCounters.back().store(0);
return {&threadStacks.back(), &threadStackMutexes.back(),
&threadCounters.back()};
}
};
} // namespace EC

View file

@ -1458,8 +1458,8 @@ TEST(EC, NestedThreadPoolTasks) {
EXPECT_NE(outer_c->x, inner_c->x);
EXPECT_NE(outer_c->y, inner_c->y);
}
}, c, false);
}, c, true);
}, &manager, true);
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
//std::this_thread::sleep_for(std::chrono::milliseconds(100));
}

View file

@ -16,22 +16,22 @@ TEST(ECThreadPool, OneThread) {
p.queueFn(fn, &data);
p.wakeThreads();
p.startThreads();
do {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
} while(!p.isQueueEmpty() || !p.isAllThreadsWaiting());
} while(!p.isQueueEmpty() || !p.isNotRunning());
ASSERT_EQ(data.load(), 1);
for(unsigned int i = 0; i < 10; ++i) {
p.queueFn(fn, &data);
}
p.wakeThreads();
p.startThreads();
do {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
} while(!p.isQueueEmpty() || !p.isAllThreadsWaiting());
} while(!p.isQueueEmpty() || !p.isNotRunning());
ASSERT_EQ(data.load(), 11);
}
@ -47,22 +47,22 @@ TEST(ECThreadPool, Simple) {
p.queueFn(fn, &data);
p.wakeThreads();
p.startThreads();
do {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
} while(!p.isQueueEmpty() || !p.isAllThreadsWaiting());
} while(!p.isQueueEmpty() || !p.isNotRunning());
ASSERT_EQ(data.load(), 1);
for(unsigned int i = 0; i < 10; ++i) {
p.queueFn(fn, &data);
}
p.wakeThreads();
p.startThreads();
do {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
} while(!p.isQueueEmpty() || !p.isAllThreadsWaiting());
} while(!p.isQueueEmpty() || !p.isNotRunning());
ASSERT_EQ(data.load(), 11);
}
@ -70,15 +70,15 @@ TEST(ECThreadPool, Simple) {
TEST(ECThreadPool, QueryCount) {
{
OneThreadPool oneP;
ASSERT_EQ(1, oneP.getThreadCount());
ASSERT_EQ(1, oneP.getMaxThreadCount());
}
{
ThreeThreadPool threeP;
ASSERT_EQ(3, threeP.getThreadCount());
ASSERT_EQ(3, threeP.getMaxThreadCount());
}
}
TEST(ECThreadPool, easyWakeAndWait) {
TEST(ECThreadPool, easyStartAndWait) {
std::atomic_int data;
data.store(0);
{
@ -89,7 +89,7 @@ TEST(ECThreadPool, easyWakeAndWait) {
atomicInt->fetch_add(1);
}, &data);
}
oneP.easyWakeAndWait();
oneP.easyStartAndWait();
EXPECT_EQ(20, data.load());
}
{
@ -100,7 +100,7 @@ TEST(ECThreadPool, easyWakeAndWait) {
atomicInt->fetch_add(1);
}, &data);
}
threeP.easyWakeAndWait();
threeP.easyStartAndWait();
EXPECT_EQ(40, data.load());
}
}