Rework unit-tests to not use GTest
All checks were successful
Publish doxygen documentation to seodisparate.com / doxygen-gen-and-publish (push) Successful in 2s
Run UnitTests / build-and-run-tests (push) Successful in 2m32s

This commit is contained in:
Stephen Seo 2024-07-12 15:52:53 +09:00
parent 510156bc58
commit c6b13de9f8
9 changed files with 852 additions and 702 deletions

View file

@ -9,7 +9,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Install dependencies
run: sudo /usr/bin/env DEBIAN_FRONTEND=noninteractive apt-get install libgtest-dev cmake git libsodium-dev
run: sudo /usr/bin/env DEBIAN_FRONTEND=noninteractive apt-get install cmake git libsodium-dev
- name: Get sources
run: git clone --depth=1 --no-single-branch https://github.com/Stephen-Seo/UDPConnection.git UDPC && cd UDPC && git checkout $GITHUB_REF_NAME
- name: Build sources

View file

@ -59,21 +59,18 @@ else()
endif()
if(CMAKE_BUILD_TYPE MATCHES "Debug")
find_package(GTest QUIET)
if(GTEST_FOUND)
set(UDPC_UnitTest_SOURCES
src/CXX11_shared_spin_lock.cpp
src/test/UDPC_UnitTest.cpp
src/test/TestTSLQueue.cpp
src/test/TestUDPC.cpp
src/test/TestSharedSpinLock.cpp
)
add_executable(UnitTest ${UDPC_UnitTest_SOURCES})
target_compile_features(UnitTest PUBLIC cxx_std_11)
target_link_libraries(UnitTest PUBLIC UDPC ${GTEST_BOTH_LIBRARIES})
target_include_directories(UnitTest PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/src)
endif()
set(UDPC_UnitTest_SOURCES
src/CXX11_shared_spin_lock.cpp
src/test/UDPC_UnitTest.cpp
src/test/TestTSLQueue.cpp
src/test/TestUDPC.cpp
src/test/TestSharedSpinLock.cpp
)
add_executable(UnitTest ${UDPC_UnitTest_SOURCES})
target_compile_features(UnitTest PUBLIC cxx_std_11)
target_link_libraries(UnitTest PUBLIC UDPC)
target_include_directories(UnitTest PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/src)
target_compile_options(UnitTest PRIVATE "-Wno-sign-compare")
set(UDPC_NetworkTest_SOURCES
src/test/UDPC_NetworkTest.c)

View file

@ -73,8 +73,7 @@ and is also an example of using the library in a C program.
NetworkTest only builds when CMAKE\_BUILD\_TYPE is Debug (default).
UnitTest only builds in Debug mode and if GTest (a unit testing framework) is
available.
UnitTest only builds in Debug mode.
# Links
https://github.com/Stephen-Seo/UDPConnection

View file

@ -1,18 +1,18 @@
#include <gtest/gtest.h>
#include "CXX11_shared_spin_lock.hpp"
#include "test_helpers.h"
#include "test_headers.h"
TEST(CXX11_shared_spin_lock, simple) {
void TEST_CXX11_shared_spin_lock() {
UDPC::SharedSpinLock::Ptr spinLockPtr = UDPC::SharedSpinLock::newInstance();
auto readLock = spinLockPtr->spin_read_lock();
EXPECT_TRUE(readLock.isValid());
EXPECT_TRUE(spinLockPtr->spin_read_lock().isValid());
EXPECT_FALSE(spinLockPtr->try_spin_write_lock().isValid());
CHECK_TRUE(readLock.isValid());
CHECK_TRUE(spinLockPtr->spin_read_lock().isValid());
CHECK_FALSE(spinLockPtr->try_spin_write_lock().isValid());
auto writeLock = spinLockPtr->trade_read_for_write_lock(readLock);
EXPECT_TRUE(writeLock.isValid());
EXPECT_FALSE(readLock.isValid());
EXPECT_FALSE(spinLockPtr->try_spin_read_lock().isValid());
EXPECT_FALSE(spinLockPtr->try_spin_write_lock().isValid());
CHECK_TRUE(writeLock.isValid());
CHECK_FALSE(readLock.isValid());
CHECK_FALSE(spinLockPtr->try_spin_read_lock().isValid());
CHECK_FALSE(spinLockPtr->try_spin_write_lock().isValid());
}

View file

@ -1,276 +1,286 @@
#include <gtest/gtest.h>
#include "test_helpers.h"
#include "test_headers.h"
#include <future>
#include <functional>
#include "TSLQueue.hpp"
TEST(TSLQueue, PushTopPopSize) {
TSLQueue<int> q;
EXPECT_FALSE(q.top());
for(int i = 0; i < 10; ++i) {
EXPECT_EQ(i, q.size());
q.push(i);
}
for(int i = 0; i < 10; ++i) {
auto v = q.top();
ASSERT_TRUE(v);
EXPECT_EQ(*v, i);
EXPECT_EQ(10 - i, q.size());
EXPECT_TRUE(q.pop());
}
EXPECT_EQ(q.size(), 0);
EXPECT_FALSE(q.pop());
}
TEST(TSLQueue, PushNB_TopNB_TopAndPop_Size) {
TSLQueue<int> q;
for(int i = 0; i < 10; ++i) {
EXPECT_EQ(q.size(), i);
EXPECT_TRUE(q.push_nb(i));
}
for(int i = 0; i < 10; ++i) {
auto v = q.top_nb();
ASSERT_TRUE(v);
EXPECT_EQ(*v, i);
EXPECT_EQ(q.size(), 10 - i);
v = q.top_and_pop();
ASSERT_TRUE(v);
EXPECT_EQ(*v, i);
}
void TEST_TSLQueue() {
// PushTopPopSize
{
auto v = q.top_nb();
ASSERT_FALSE(v);
TSLQueue<int> q;
CHECK_FALSE(q.top());
for(int i = 0; i < 10; ++i) {
CHECK_EQ(i, q.size());
q.push(i);
}
for(int i = 0; i < 10; ++i) {
auto v = q.top();
ASSERT_TRUE(v);
CHECK_EQ(*v, i);
CHECK_EQ(10 - i, q.size());
CHECK_TRUE(q.pop());
}
CHECK_EQ(q.size(), 0);
CHECK_FALSE(q.pop());
}
// PushNB_TopNB_TopAndPop_Size
{
auto v = q.top_and_pop();
ASSERT_FALSE(v);
}
EXPECT_EQ(q.size(), 0);
}
TSLQueue<int> q;
TEST(TSLQueue, Push_TopAndPopAndEmpty_Size) {
TSLQueue<int> q;
for(int i = 0; i < 10; ++i) {
CHECK_EQ(q.size(), i);
CHECK_TRUE(q.push_nb(i));
}
for(int i = 0; i < 10; ++i) {
EXPECT_EQ(q.size(), i);
q.push(i);
for(int i = 0; i < 10; ++i) {
auto v = q.top_nb();
ASSERT_TRUE(v);
CHECK_EQ(*v, i);
CHECK_EQ(q.size(), 10 - i);
v = q.top_and_pop();
ASSERT_TRUE(v);
CHECK_EQ(*v, i);
}
{
auto v = q.top_nb();
ASSERT_FALSE(v);
}
{
auto v = q.top_and_pop();
ASSERT_FALSE(v);
}
CHECK_EQ(q.size(), 0);
}
bool isEmpty;
for(int i = 0; i < 10; ++i) {
EXPECT_EQ(q.size(), 10 - i);
auto v = q.top_and_pop_and_empty(&isEmpty);
ASSERT_TRUE(v);
EXPECT_EQ(*v, i);
EXPECT_EQ(i == 9, isEmpty);
}
EXPECT_EQ(q.size(), 0);
}
TEST(TSLQueue, PushClearEmptySize) {
TSLQueue<int> q;
for(int i = 0; i < 10; ++i) {
EXPECT_EQ(q.size(), i);
q.push(i);
}
EXPECT_EQ(q.size(), 10);
EXPECT_FALSE(q.empty());
q.clear();
EXPECT_TRUE(q.empty());
EXPECT_EQ(q.size(), 0);
}
TEST(TSLQueue, Concurrent) {
TSLQueue<int> q;
const auto add_fn = [] (TSLQueue<int> *q, int i) -> void {
q->push(i);
};
std::future<void> futures[100];
for(int i = 0; i < 100; ++i) {
futures[i] = std::async(std::launch::async, add_fn, &q, i);
}
for(int i = 0; i < 100; ++i) {
futures[i].wait();
}
EXPECT_FALSE(q.empty());
for(int i = 0; i < 100; ++i) {
EXPECT_EQ(q.size(), 100 - i);
auto v = q.top_and_pop();
ASSERT_TRUE(v);
EXPECT_GE(*v, 0);
EXPECT_LE(*v, 100);
EXPECT_EQ(i == 99, q.empty());
}
EXPECT_EQ(q.size(), 0);
}
TEST(TSLQueue, Iterator) {
TSLQueue<int> q;
for(int i = 0; i < 10; ++i) {
q.push(i);
}
EXPECT_EQ(q.size(), 10);
// Push_TopAndPopAndEmpty_Size
{
// iteration
auto iter = q.begin();
TSLQueue<int> q;
for(int i = 0; i < 10; ++i) {
CHECK_EQ(q.size(), i);
q.push(i);
}
bool isEmpty;
for(int i = 0; i < 10; ++i) {
CHECK_EQ(q.size(), 10 - i);
auto v = q.top_and_pop_and_empty(&isEmpty);
ASSERT_TRUE(v);
CHECK_EQ(*v, i);
CHECK_EQ(i == 9, isEmpty);
}
CHECK_EQ(q.size(), 0);
}
// PushClearEmptySize
{
TSLQueue<int> q;
for(int i = 0; i < 10; ++i) {
CHECK_EQ(q.size(), i);
q.push(i);
}
CHECK_EQ(q.size(), 10);
CHECK_FALSE(q.empty());
q.clear();
CHECK_TRUE(q.empty());
CHECK_EQ(q.size(), 0);
}
// Concurrent
{
TSLQueue<int> q;
const auto add_fn = [] (TSLQueue<int> *q, int i) -> void {
q->push(i);
};
std::future<void> futures[100];
for(int i = 0; i < 100; ++i) {
futures[i] = std::async(std::launch::async, add_fn, &q, i);
}
for(int i = 0; i < 100; ++i) {
futures[i].wait();
}
CHECK_FALSE(q.empty());
for(int i = 0; i < 100; ++i) {
CHECK_EQ(q.size(), 100 - i);
auto v = q.top_and_pop();
ASSERT_TRUE(v);
CHECK_GE(*v, 0);
CHECK_LE(*v, 100);
CHECK_EQ(i == 99, q.empty());
}
CHECK_EQ(q.size(), 0);
}
// Iterator
{
TSLQueue<int> q;
for(int i = 0; i < 10; ++i) {
q.push(i);
}
CHECK_EQ(q.size(), 10);
{
// iteration
auto iter = q.begin();
int i = 0;
auto op = iter.current();
while(op) {
CHECK_EQ(*op, i++);
if(i < 10) {
CHECK_TRUE(iter.next());
} else {
CHECK_FALSE(iter.next());
}
op = iter.current();
}
// test that lock is held by iterator
CHECK_FALSE(q.push_nb(10));
op = q.top_nb();
// Getting top and iterator both hold read locks so this should be true.
CHECK_TRUE(op);
// backwards iteration
CHECK_TRUE(iter.prev());
op = iter.current();
while(op) {
CHECK_EQ(*op, --i);
if(i > 0) {
CHECK_TRUE(iter.prev());
} else {
CHECK_FALSE(iter.prev());
}
op = iter.current();
}
}
{
// iter remove
auto iter = q.begin();
CHECK_TRUE(iter.next());
CHECK_TRUE(iter.next());
CHECK_TRUE(iter.next());
CHECK_TRUE(iter.remove());
auto op = iter.current();
CHECK_TRUE(op);
CHECK_EQ(*op, 4);
CHECK_TRUE(iter.prev());
op = iter.current();
CHECK_TRUE(op);
CHECK_EQ(*op, 2);
// second iterator
auto iter2 = q.begin();
// Still should be able to get top.
CHECK_TRUE(iter2.current());
// Shouldn't be able to remove if 2 iterators exist.
CHECK_FALSE(iter2.try_remove());
// This will never return since the first iterator has a "read" lock.
//CHECK_FALSE(iter2.remove());
// Still should be able to get top.
CHECK_TRUE(iter2.current());
}
CHECK_EQ(q.size(), 9);
// check that "3" was removed from queue
int i = 0;
auto op = iter.current();
while(op) {
EXPECT_EQ(*op, i++);
if(i < 10) {
EXPECT_TRUE(iter.next());
} else {
EXPECT_FALSE(iter.next());
std::unique_ptr<int> op;
while(!q.empty()) {
op = q.top();
CHECK_TRUE(op);
CHECK_EQ(i++, *op);
if(i == 3) {
++i;
}
op = iter.current();
CHECK_TRUE(q.pop());
}
// test that lock is held by iterator
EXPECT_FALSE(q.push_nb(10));
op = q.top_nb();
// Getting top and iterator both hold read locks so this should be true.
EXPECT_TRUE(op);
// remove from start
q.push(0);
q.push(1);
q.push(2);
q.push(3);
CHECK_EQ(q.size(), 4);
{
auto iter = q.begin();
CHECK_TRUE(iter.remove());
}
CHECK_EQ(q.size(), 3);
i = 1;
while(!q.empty()) {
op = q.top();
CHECK_TRUE(op);
CHECK_EQ(i++, *op);
CHECK_TRUE(q.pop());
}
// backwards iteration
EXPECT_TRUE(iter.prev());
op = iter.current();
while(op) {
EXPECT_EQ(*op, --i);
if(i > 0) {
EXPECT_TRUE(iter.prev());
} else {
EXPECT_FALSE(iter.prev());
// remove from end
q.push(0);
q.push(1);
q.push(2);
q.push(3);
CHECK_EQ(q.size(), 4);
{
auto iter = q.begin();
while(true) {
CHECK_TRUE(iter.next());
op = iter.current();
CHECK_TRUE(op);
if(*op == 3) {
CHECK_FALSE(iter.remove());
break;
}
}
op = iter.current();
}
}
{
// iter remove
auto iter = q.begin();
EXPECT_TRUE(iter.next());
EXPECT_TRUE(iter.next());
EXPECT_TRUE(iter.next());
EXPECT_TRUE(iter.remove());
auto op = iter.current();
EXPECT_TRUE(op);
EXPECT_EQ(*op, 4);
EXPECT_TRUE(iter.prev());
op = iter.current();
EXPECT_TRUE(op);
EXPECT_EQ(*op, 2);
// second iterator
auto iter2 = q.begin();
// Still should be able to get top.
EXPECT_TRUE(iter2.current());
// Shouldn't be able to remove if 2 iterators exist.
EXPECT_FALSE(iter2.try_remove());
// This will never return since the first iterator has a "read" lock.
//EXPECT_FALSE(iter2.remove());
// Still should be able to get top.
EXPECT_TRUE(iter2.current());
}
EXPECT_EQ(q.size(), 9);
// check that "3" was removed from queue
int i = 0;
std::unique_ptr<int> op;
while(!q.empty()) {
op = q.top();
EXPECT_TRUE(op);
EXPECT_EQ(i++, *op);
if(i == 3) {
++i;
}
EXPECT_TRUE(q.pop());
}
// remove from start
q.push(0);
q.push(1);
q.push(2);
q.push(3);
EXPECT_EQ(q.size(), 4);
{
auto iter = q.begin();
EXPECT_TRUE(iter.remove());
}
EXPECT_EQ(q.size(), 3);
i = 1;
while(!q.empty()) {
op = q.top();
EXPECT_TRUE(op);
EXPECT_EQ(i++, *op);
EXPECT_TRUE(q.pop());
}
// remove from end
q.push(0);
q.push(1);
q.push(2);
q.push(3);
EXPECT_EQ(q.size(), 4);
{
auto iter = q.begin();
while(true) {
EXPECT_TRUE(iter.next());
op = iter.current();
EXPECT_TRUE(op);
if(*op == 3) {
EXPECT_FALSE(iter.remove());
break;
CHECK_EQ(q.size(), 3);
i = 0;
while(!q.empty()) {
op = q.top();
CHECK_TRUE(op);
CHECK_EQ(i++, *op);
CHECK_TRUE(q.pop());
if(i == 3) {
CHECK_TRUE(q.empty());
}
}
}
EXPECT_EQ(q.size(), 3);
i = 0;
while(!q.empty()) {
op = q.top();
EXPECT_TRUE(op);
EXPECT_EQ(i++, *op);
EXPECT_TRUE(q.pop());
if(i == 3) {
EXPECT_TRUE(q.empty());
}
// TempToNew
{
TSLQueue<int> q;
q.push(1234);
q.push(5678);
auto getValue = [] (TSLQueue<int> *q) -> int {
auto uptr = q->top_and_pop();
return *uptr;
};
int value;
value = getValue(&q);
CHECK_EQ(1234, value);
value = getValue(&q);
CHECK_EQ(5678, value);
}
}
TEST(TSLQueue, TempToNew) {
TSLQueue<int> q;
q.push(1234);
q.push(5678);
auto getValue = [] (TSLQueue<int> *q) -> int {
auto uptr = q->top_and_pop();
return *uptr;
};
int value;
value = getValue(&q);
EXPECT_EQ(1234, value);
value = getValue(&q);
EXPECT_EQ(5678, value);
}

View file

@ -1,464 +1,478 @@
#include <gtest/gtest.h>
#include "test_headers.h"
#include "test_helpers.h"
#include <UDPC.h>
#include <UDPC_Defines.hpp>
#include <array>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <future>
TEST(UDPC, atostr) {
UDPC::Context context(false);
void TEST_UDPC() {
// atostr
{
UDPC::Context context(false);
UDPC_ConnectionId conId;
const char* resultBuf;
UDPC_ConnectionId conId;
const char* resultBuf;
for(unsigned int i = 0; i < 16; ++i) {
conId.addr.s6_addr[i] = (i % 3 == 0 ? 0xFF : (i % 3 == 1 ? 0x12 : 0x56));
}
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
EXPECT_STREQ(resultBuf, "ff12:56ff:1256:ff12:56ff:1256:ff12:56ff");
for(unsigned int i = 0; i < 8; ++i) {
conId.addr.s6_addr[i] = 0;
}
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
EXPECT_STREQ(resultBuf, "::56ff:1256:ff12:56ff");
conId.addr.s6_addr[0] = 1;
conId.addr.s6_addr[1] = 2;
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
EXPECT_STREQ(resultBuf, "102::56ff:1256:ff12:56ff");
conId.addr.s6_addr[14] = 0;
conId.addr.s6_addr[15] = 0;
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
EXPECT_STREQ(resultBuf, "102::56ff:1256:ff12:0");
for(unsigned int i = 0; i < 15; ++i) {
conId.addr.s6_addr[i] = 0;
}
conId.addr.s6_addr[15] = 1;
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
EXPECT_STREQ(resultBuf, "::1");
conId.addr.s6_addr[15] = 0;
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
EXPECT_STREQ(resultBuf, "::");
conId.addr = {
0xAE, 0x0, 0x12, 1,
0x10, 0x45, 0x2, 0x13,
0, 0, 0, 0,
0, 0, 0, 0
};
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
EXPECT_STREQ(resultBuf, "ae00:1201:1045:213::");
}
TEST(UDPC, atostr_concurrent) {
UDPC::Context context(false);
const char* results[64] = {
"::1111:1",
"::1111:2",
"::1111:3",
"::1111:4",
"::1111:5",
"::1111:6",
"::1111:7",
"::1111:8",
"::1111:9",
"::1111:a",
"::1111:b",
"::1111:c",
"::1111:d",
"::1111:e",
"::1111:f",
"::1111:10",
"::1111:11",
"::1111:12",
"::1111:13",
"::1111:14",
"::1111:15",
"::1111:16",
"::1111:17",
"::1111:18",
"::1111:19",
"::1111:1a",
"::1111:1b",
"::1111:1c",
"::1111:1d",
"::1111:1e",
"::1111:1f",
"::1111:20",
"::1111:21",
"::1111:22",
"::1111:23",
"::1111:24",
"::1111:25",
"::1111:26",
"::1111:27",
"::1111:28",
"::1111:29",
"::1111:2a",
"::1111:2b",
"::1111:2c",
"::1111:2d",
"::1111:2e",
"::1111:2f",
"::1111:30",
"::1111:31",
"::1111:32",
"::1111:33",
"::1111:34",
"::1111:35",
"::1111:36",
"::1111:37",
"::1111:38",
"::1111:39",
"::1111:3a",
"::1111:3b",
"::1111:3c",
"::1111:3d",
"::1111:3e",
"::1111:3f",
"::1111:40"
};
std::future<void> futures[32];
const char* ptrs[32];
for(unsigned int i = 0; i < 2; ++i) {
for(unsigned int j = 0; j < 32; ++j) {
futures[j] = std::async(std::launch::async, [] (unsigned int id, const char** ptr, UDPC::Context* c) {
UDPC_ConnectionId conId = {
{0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0x11, 0x11, 0x0, (unsigned char)(id + 1)},
0,
0
};
ptr[id] = UDPC_atostr((UDPC_HContext)c, conId.addr);
}, j, ptrs, &context);
for(unsigned int i = 0; i < 16; ++i) {
conId.addr.s6_addr[i] = (i % 3 == 0 ? 0xFF : (i % 3 == 1 ? 0x12 : 0x56));
}
for(unsigned int j = 0; j < 32; ++j) {
ASSERT_TRUE(futures[j].valid());
futures[j].wait();
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
CHECK_STREQ(resultBuf, "ff12:56ff:1256:ff12:56ff:1256:ff12:56ff");
for(unsigned int i = 0; i < 8; ++i) {
conId.addr.s6_addr[i] = 0;
}
for(unsigned int j = 0; j < 32; ++j) {
EXPECT_STREQ(ptrs[j], results[j]);
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
CHECK_STREQ(resultBuf, "::56ff:1256:ff12:56ff");
conId.addr.s6_addr[0] = 1;
conId.addr.s6_addr[1] = 2;
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
CHECK_STREQ(resultBuf, "102::56ff:1256:ff12:56ff");
conId.addr.s6_addr[14] = 0;
conId.addr.s6_addr[15] = 0;
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
CHECK_STREQ(resultBuf, "102::56ff:1256:ff12:0");
for(unsigned int i = 0; i < 15; ++i) {
conId.addr.s6_addr[i] = 0;
}
conId.addr.s6_addr[15] = 1;
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
CHECK_STREQ(resultBuf, "::1");
conId.addr.s6_addr[15] = 0;
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
CHECK_STREQ(resultBuf, "::");
conId.addr = {
0xAE, 0x0, 0x12, 1,
0x10, 0x45, 0x2, 0x13,
0, 0, 0, 0,
0, 0, 0, 0
};
resultBuf = UDPC_atostr((UDPC_HContext)&context, conId.addr);
CHECK_STREQ(resultBuf, "ae00:1201:1045:213::");
}
// atostr_concurrent
{
UDPC::Context context(false);
const char* results[64] = {
"::1111:1",
"::1111:2",
"::1111:3",
"::1111:4",
"::1111:5",
"::1111:6",
"::1111:7",
"::1111:8",
"::1111:9",
"::1111:a",
"::1111:b",
"::1111:c",
"::1111:d",
"::1111:e",
"::1111:f",
"::1111:10",
"::1111:11",
"::1111:12",
"::1111:13",
"::1111:14",
"::1111:15",
"::1111:16",
"::1111:17",
"::1111:18",
"::1111:19",
"::1111:1a",
"::1111:1b",
"::1111:1c",
"::1111:1d",
"::1111:1e",
"::1111:1f",
"::1111:20",
"::1111:21",
"::1111:22",
"::1111:23",
"::1111:24",
"::1111:25",
"::1111:26",
"::1111:27",
"::1111:28",
"::1111:29",
"::1111:2a",
"::1111:2b",
"::1111:2c",
"::1111:2d",
"::1111:2e",
"::1111:2f",
"::1111:30",
"::1111:31",
"::1111:32",
"::1111:33",
"::1111:34",
"::1111:35",
"::1111:36",
"::1111:37",
"::1111:38",
"::1111:39",
"::1111:3a",
"::1111:3b",
"::1111:3c",
"::1111:3d",
"::1111:3e",
"::1111:3f",
"::1111:40"
};
std::future<void> futures[32];
const char* ptrs[32];
for(unsigned int i = 0; i < 2; ++i) {
for(unsigned int j = 0; j < 32; ++j) {
futures[j] = std::async(std::launch::async, [] (unsigned int id, const char** ptr, UDPC::Context* c) {
UDPC_ConnectionId conId = {
{0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0x11, 0x11, 0x0, (unsigned char)(id + 1)},
0,
0
};
ptr[id] = UDPC_atostr((UDPC_HContext)c, conId.addr);
}, j, ptrs, &context);
}
for(unsigned int j = 0; j < 32; ++j) {
ASSERT_TRUE(futures[j].valid());
futures[j].wait();
}
for(unsigned int j = 0; j < 32; ++j) {
CHECK_STREQ(ptrs[j], results[j]);
}
}
}
}
TEST(UDPC, atostr_unsafe) {
const char* results[64] = {
"::1111:1",
"::1111:2",
"::1111:3",
"::1111:4",
"::1111:5",
"::1111:6",
"::1111:7",
"::1111:8",
"::1111:9",
"::1111:a",
"::1111:b",
"::1111:c",
"::1111:d",
"::1111:e",
"::1111:f",
"::1111:10",
"::1111:11",
"::1111:12",
"::1111:13",
"::1111:14",
"::1111:15",
"::1111:16",
"::1111:17",
"::1111:18",
"::1111:19",
"::1111:1a",
"::1111:1b",
"::1111:1c",
"::1111:1d",
"::1111:1e",
"::1111:1f",
"::1111:20",
"::1111:21",
"::1111:22",
"::1111:23",
"::1111:24",
"::1111:25",
"::1111:26",
"::1111:27",
"::1111:28",
"::1111:29",
"::1111:2a",
"::1111:2b",
"::1111:2c",
"::1111:2d",
"::1111:2e",
"::1111:2f",
"::1111:30",
"::1111:31",
"::1111:32",
"::1111:33",
"::1111:34",
"::1111:35",
"::1111:36",
"::1111:37",
"::1111:38",
"::1111:39",
"::1111:3a",
"::1111:3b",
"::1111:3c",
"::1111:3d",
"::1111:3e",
"::1111:3f",
"::1111:40"
};
std::future<void> futures[32];
const char* ptrs[32];
for(unsigned int i = 0; i < 2; ++i) {
for(unsigned int j = 0; j < 32; ++j) {
futures[j] = std::async(std::launch::async, [] (unsigned int id, const char** ptr) {
UDPC_ConnectionId conId = {
{0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0x11, 0x11, 0x0, (unsigned char)(id + 1)},
0,
0
};
ptr[id] = UDPC_atostr_unsafe(conId.addr);
}, j, ptrs);
}
for(unsigned int j = 0; j < 32; ++j) {
ASSERT_TRUE(futures[j].valid());
futures[j].wait();
}
for(unsigned int j = 0; j < 32; ++j) {
EXPECT_STREQ(ptrs[j], results[j]);
UDPC_atostr_unsafe_free_ptr(ptrs + j);
UDPC_atostr_unsafe_free_ptr(ptrs + j);
// atostr_unsafe
{
const char* results[64] = {
"::1111:1",
"::1111:2",
"::1111:3",
"::1111:4",
"::1111:5",
"::1111:6",
"::1111:7",
"::1111:8",
"::1111:9",
"::1111:a",
"::1111:b",
"::1111:c",
"::1111:d",
"::1111:e",
"::1111:f",
"::1111:10",
"::1111:11",
"::1111:12",
"::1111:13",
"::1111:14",
"::1111:15",
"::1111:16",
"::1111:17",
"::1111:18",
"::1111:19",
"::1111:1a",
"::1111:1b",
"::1111:1c",
"::1111:1d",
"::1111:1e",
"::1111:1f",
"::1111:20",
"::1111:21",
"::1111:22",
"::1111:23",
"::1111:24",
"::1111:25",
"::1111:26",
"::1111:27",
"::1111:28",
"::1111:29",
"::1111:2a",
"::1111:2b",
"::1111:2c",
"::1111:2d",
"::1111:2e",
"::1111:2f",
"::1111:30",
"::1111:31",
"::1111:32",
"::1111:33",
"::1111:34",
"::1111:35",
"::1111:36",
"::1111:37",
"::1111:38",
"::1111:39",
"::1111:3a",
"::1111:3b",
"::1111:3c",
"::1111:3d",
"::1111:3e",
"::1111:3f",
"::1111:40"
};
std::future<void> futures[32];
const char* ptrs[32];
for(unsigned int i = 0; i < 2; ++i) {
for(unsigned int j = 0; j < 32; ++j) {
futures[j] = std::async(std::launch::async, [] (unsigned int id, const char** ptr) {
UDPC_ConnectionId conId = {
{0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0x11, 0x11, 0x0, (unsigned char)(id + 1)},
0,
0
};
ptr[id] = UDPC_atostr_unsafe(conId.addr);
}, j, ptrs);
}
for(unsigned int j = 0; j < 32; ++j) {
ASSERT_TRUE(futures[j].valid());
futures[j].wait();
}
for(unsigned int j = 0; j < 32; ++j) {
CHECK_STREQ(ptrs[j], results[j]);
UDPC_atostr_unsafe_free_ptr(ptrs + j);
UDPC_atostr_unsafe_free_ptr(ptrs + j);
}
}
}
}
TEST(UDPC, strtoa) {
struct in6_addr addr;
// strtoa
{
struct in6_addr addr;
for(unsigned int i = 0; i < 16; ++i) {
addr.s6_addr[i] = 0;
}
addr.s6_addr[15] = 1;
for(unsigned int i = 0; i < 16; ++i) {
addr.s6_addr[i] = 0;
}
addr.s6_addr[15] = 1;
EXPECT_EQ(UDPC_strtoa("::1"), addr);
CHECK_EQ(UDPC_strtoa("::1"), addr);
// check invalid
EXPECT_EQ(UDPC_strtoa("1:1::1:1::1"), addr);
EXPECT_EQ(UDPC_strtoa("derpadoodle"), addr);
// check invalid
CHECK_EQ(UDPC_strtoa("1:1::1:1::1"), addr);
CHECK_EQ(UDPC_strtoa("derpadoodle"), addr);
addr = {
0xF0, 0xF, 0x0, 0x1,
0x56, 0x78, 0x9A, 0xBC,
0xDE, 0xFF, 0x1, 0x2,
0x3, 0x4, 0x5, 0x6
};
EXPECT_EQ(UDPC_strtoa("F00F:1:5678:9abc:deff:102:304:506"), addr);
addr = {
0xF0, 0xF, 0x0, 0x1,
0x56, 0x78, 0x9A, 0xBC,
0xDE, 0xFF, 0x1, 0x2,
0x3, 0x4, 0x5, 0x6
};
CHECK_EQ(UDPC_strtoa("F00F:1:5678:9abc:deff:102:304:506"), addr);
addr = {
0x0, 0xFF, 0x1, 0x0,
0x0, 0x1, 0x10, 0x0,
0x0, 0x0, 0x0, 0x0,
0x12, 0x34, 0xab, 0xcd
};
EXPECT_EQ(UDPC_strtoa("ff:100:1:1000::1234:abcd"), addr);
addr = {
0x0, 0xFF, 0x1, 0x0,
0x0, 0x1, 0x10, 0x0,
0x0, 0x0, 0x0, 0x0,
0x12, 0x34, 0xab, 0xcd
};
CHECK_EQ(UDPC_strtoa("ff:100:1:1000::1234:abcd"), addr);
addr = {
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0xFF, 0xFF,
0x7F, 0x0, 0x0, 0x1
};
EXPECT_EQ(UDPC_strtoa("127.0.0.1"), addr);
addr = {
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0xFF, 0xFF,
0x7F, 0x0, 0x0, 0x1
};
CHECK_EQ(UDPC_strtoa("127.0.0.1"), addr);
addr = {
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0xFF, 0xFF,
0xA, 0x1, 0x2, 0x3
};
EXPECT_EQ(UDPC_strtoa("10.1.2.3"), addr);
}
TEST(UDPC, create_id_easy) {
UDPC_ConnectionId conId;
// not link local
conId = UDPC_create_id_easy("::FFFF:7F00:1", 301);
for(unsigned int i = 0; i < 10; ++i) {
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[i], 0);
}
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[10], 0xFF);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[11], 0xFF);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[12], 0x7F);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[13], 0);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[14], 0);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[15], 0x1);
EXPECT_EQ(conId.scope_id, 0);
EXPECT_EQ(conId.port, 301);
// link local
conId = UDPC_create_id_easy("fe80::1234:5678:9%3", 123);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[0], 0xFE);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[1], 0x80);
for(unsigned int i = 2; i < 10; ++i) {
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[i], 0);
}
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[10], 0x12);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[11], 0x34);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[12], 0x56);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[13], 0x78);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[14], 0);
EXPECT_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[15], 0x9);
EXPECT_EQ(conId.scope_id, 3);
EXPECT_EQ(conId.port, 123);
}
TEST(UDPC, ConnectionIdBits) {
UDPC_ConnectionId id = UDPC_create_id({0}, 0);
for(unsigned int i = 0; i < sizeof(UDPC_ConnectionId); ++i) {
EXPECT_EQ(((char*)&id)[i], 0);
addr = {
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0xFF, 0xFF,
0xA, 0x1, 0x2, 0x3
};
CHECK_EQ(UDPC_strtoa("10.1.2.3"), addr);
}
id = UDPC_create_id_full({0}, 0, 0);
for(unsigned int i = 0; i < sizeof(UDPC_ConnectionId); ++i) {
EXPECT_EQ(((char*)&id)[i], 0);
// create_id_easy
{
UDPC_ConnectionId conId;
// not link local
conId = UDPC_create_id_easy("::FFFF:7F00:1", 301);
for(unsigned int i = 0; i < 10; ++i) {
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[i], 0);
}
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[10], 0xFF);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[11], 0xFF);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[12], 0x7F);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[13], 0);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[14], 0);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[15], 0x1);
CHECK_EQ(conId.scope_id, 0);
CHECK_EQ(conId.port, 301);
// link local
conId = UDPC_create_id_easy("fe80::1234:5678:9%3", 123);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[0], 0xFE);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[1], 0x80);
for(unsigned int i = 2; i < 10; ++i) {
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[i], 0);
}
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[10], 0x12);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[11], 0x34);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[12], 0x56);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[13], 0x78);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[14], 0);
CHECK_EQ(UDPC_IPV6_ADDR_SUB(conId.addr)[15], 0x9);
CHECK_EQ(conId.scope_id, 3);
CHECK_EQ(conId.port, 123);
}
id = UDPC_create_id_anyaddr(0);
for(unsigned int i = 0; i < sizeof(UDPC_ConnectionId); ++i) {
EXPECT_EQ(((char*)&id)[i], 0);
// ConnectionIdBits
{
UDPC_ConnectionId id = UDPC_create_id({0}, 0);
for(unsigned int i = 0; i < sizeof(UDPC_ConnectionId); ++i) {
CHECK_EQ(((char*)&id)[i], 0);
}
id = UDPC_create_id_full({0}, 0, 0);
for(unsigned int i = 0; i < sizeof(UDPC_ConnectionId); ++i) {
CHECK_EQ(((char*)&id)[i], 0);
}
id = UDPC_create_id_anyaddr(0);
for(unsigned int i = 0; i < sizeof(UDPC_ConnectionId); ++i) {
CHECK_EQ(((char*)&id)[i], 0);
}
id = UDPC_create_id_easy("::", 0);
for(unsigned int i = 0; i < sizeof(UDPC_ConnectionId); ++i) {
CHECK_EQ(((char*)&id)[i], 0);
}
}
id = UDPC_create_id_easy("::", 0);
for(unsigned int i = 0; i < sizeof(UDPC_ConnectionId); ++i) {
EXPECT_EQ(((char*)&id)[i], 0);
}
}
// NetworkOrderEndianness
{
if(UDPC_is_big_endian() != 0) {
puts("Is big-endian");
uint16_t s = 0x0102;
s = UDPC_no16i(s);
CHECK_EQ(s, 0x0102);
TEST(UDPC, NetworkOrderEndianness) {
if(UDPC_is_big_endian() != 0) {
puts("Is big-endian");
uint16_t s = 0x0102;
s = UDPC_no16i(s);
EXPECT_EQ(s, 0x0102);
uint32_t l = 0x01020304;
l = UDPC_no32i(l);
CHECK_EQ(l, 0x01020304);
uint32_t l = 0x01020304;
l = UDPC_no32i(l);
EXPECT_EQ(l, 0x01020304);
uint64_t ll = 0x0102030405060708;
ll = UDPC_no64i(ll);
CHECK_EQ(ll, 0x0102030405060708);
uint64_t ll = 0x0102030405060708;
ll = UDPC_no64i(ll);
EXPECT_EQ(ll, 0x0102030405060708);
l = 0x40208040;
float *f = reinterpret_cast<float*>(&l);
*f = UDPC_no32f(*f);
CHECK_EQ(l, 0x40208040);
l = 0x40208040;
float *f = reinterpret_cast<float*>(&l);
*f = UDPC_no32f(*f);
EXPECT_EQ(l, 0x40208040);
ll = 0x4000001010008040;
double *d = reinterpret_cast<double*>(&ll);
*d = UDPC_no64f(*d);
EXPECT_EQ(ll, 0x4000001010008040);
} else {
puts("Is NOT big-endian");
uint16_t s = 0x0102;
s = UDPC_no16i(s);
EXPECT_EQ(s, 0x0201);
s = UDPC_no16i(s);
EXPECT_EQ(s, 0x0102);
uint32_t l = 0x01020304;
l = UDPC_no32i(l);
EXPECT_EQ(l, 0x04030201);
l = UDPC_no32i(l);
EXPECT_EQ(l, 0x01020304);
uint64_t ll = 0x0102030405060708;
ll = UDPC_no64i(ll);
EXPECT_EQ(ll, 0x0807060504030201);
ll = UDPC_no64i(ll);
EXPECT_EQ(ll, 0x0102030405060708);
l = 0x40208040;
float *f = reinterpret_cast<float*>(&l);
*f = UDPC_no32f(*f);
EXPECT_EQ(l, 0x40802040);
*f = UDPC_no32f(*f);
EXPECT_EQ(l, 0x40208040);
ll = 0x4000001010008040;
double *d = reinterpret_cast<double*>(&ll);
*d = UDPC_no64f(*d);
EXPECT_EQ(ll, 0x4080001010000040);
*d = UDPC_no64f(*d);
EXPECT_EQ(ll, 0x4000001010008040);
}
}
TEST(UDPC, a4toa6) {
EXPECT_EQ(UDPC_a4toa6(0), in6addr_any);
uint32_t a4 = htonl(0x7F000001);
EXPECT_EQ(UDPC_a4toa6(a4), in6addr_loopback);
UDPC_IPV6_ADDR_TYPE a6 = UDPC_strtoa("::FFFF:0102:0304");
a4 = htonl(0x01020304);
EXPECT_EQ(UDPC_a4toa6(a4), a6);
}
TEST(UDPC, free_packet_ptr) {
UDPC_PacketInfo pinfo;
pinfo.dataSize = 8;
pinfo.data = (char*)std::malloc(pinfo.dataSize);
UDPC_free_PacketInfo_ptr(&pinfo);
UDPC_free_PacketInfo_ptr(&pinfo);
UDPC_free_PacketInfo_ptr(nullptr);
}
TEST(UDPC, enableDisableThreadedUpdate_StressTest) {
UDPC_ConnectionId id = UDPC_create_id_anyaddr(0);
UDPC_HContext ctx = UDPC_init(id, 0, 0);
UDPC_set_logging_type(ctx, UDPC_LoggingType::UDPC_WARNING);
std::array<std::thread, 100> thread_array;
for (int i = 0; i < 100; ++i) {
if (i % 2 == 0) {
thread_array[i] = std::thread([] (UDPC_HContext ctx) {
UDPC_enable_threaded_update(ctx);
}, ctx);
ll = 0x4000001010008040;
double *d = reinterpret_cast<double*>(&ll);
*d = UDPC_no64f(*d);
CHECK_EQ(ll, 0x4000001010008040);
} else {
thread_array[i] = std::thread([] (UDPC_HContext ctx) {
UDPC_disable_threaded_update(ctx);
}, ctx);
puts("Is NOT big-endian");
uint16_t s = 0x0102;
s = UDPC_no16i(s);
CHECK_EQ(s, 0x0201);
s = UDPC_no16i(s);
CHECK_EQ(s, 0x0102);
uint32_t l = 0x01020304;
l = UDPC_no32i(l);
CHECK_EQ(l, 0x04030201);
l = UDPC_no32i(l);
CHECK_EQ(l, 0x01020304);
uint64_t ll = 0x0102030405060708;
ll = UDPC_no64i(ll);
CHECK_EQ(ll, 0x0807060504030201);
ll = UDPC_no64i(ll);
CHECK_EQ(ll, 0x0102030405060708);
l = 0x40208040;
float *f = reinterpret_cast<float*>(&l);
*f = UDPC_no32f(*f);
CHECK_EQ(l, 0x40802040);
*f = UDPC_no32f(*f);
CHECK_EQ(l, 0x40208040);
ll = 0x4000001010008040;
double *d = reinterpret_cast<double*>(&ll);
*d = UDPC_no64f(*d);
CHECK_EQ(ll, 0x4080001010000040);
*d = UDPC_no64f(*d);
CHECK_EQ(ll, 0x4000001010008040);
}
}
thread_array[0].join();
// a4toa6
{
CHECK_EQ(UDPC_a4toa6(0), in6addr_any);
uint32_t a4 = htonl(0x7F000001);
CHECK_EQ(UDPC_a4toa6(a4), in6addr_loopback);
UDPC_destroy(ctx);
UDPC_IPV6_ADDR_TYPE a6 = UDPC_strtoa("::FFFF:0102:0304");
a4 = htonl(0x01020304);
CHECK_EQ(UDPC_a4toa6(a4), a6);
}
for (int i = 1; i < 100; ++i) {
thread_array[i].join();
// free_packet_ptr
{
UDPC_PacketInfo pinfo;
pinfo.dataSize = 8;
pinfo.data = (char*)std::malloc(pinfo.dataSize);
UDPC_free_PacketInfo_ptr(&pinfo);
UDPC_free_PacketInfo_ptr(&pinfo);
UDPC_free_PacketInfo_ptr(nullptr);
}
// enableDisableThreadedUpdate_StressTest
{
UDPC_ConnectionId id = UDPC_create_id_anyaddr(0);
UDPC_HContext ctx = UDPC_init(id, 0, 0);
UDPC_set_logging_type(ctx, UDPC_LoggingType::UDPC_WARNING);
std::array<std::thread, 100> thread_array;
for (int i = 0; i < 100; ++i) {
if (i % 2 == 0) {
thread_array[i] = std::thread([] (UDPC_HContext ctx) {
UDPC_enable_threaded_update(ctx);
}, ctx);
} else {
thread_array[i] = std::thread([] (UDPC_HContext ctx) {
UDPC_disable_threaded_update(ctx);
}, ctx);
}
}
thread_array[0].join();
UDPC_destroy(ctx);
for (int i = 1; i < 100; ++i) {
thread_array[i].join();
}
}
}

View file

@ -1,6 +1,18 @@
#include <gtest/gtest.h>
#include "test_helpers.h"
#include "test_headers.h"
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
int checks_checked = 0;
int checks_passed = 0;
#include <iostream>
int main() {
TEST_CXX11_shared_spin_lock();
TEST_TSLQueue();
TEST_UDPC();
std::cout << "checks_checked: " << checks_checked
<< "\nchecks_passed: " << checks_passed << std::endl;
return checks_checked == checks_passed ? 0 : 1;
}

10
src/test/test_headers.h Normal file
View file

@ -0,0 +1,10 @@
#ifndef SEODISPARATE_COM_UDPC_TEST_HEADERS_H_
#define SEODISPARATE_COM_UDPC_TEST_HEADERS_H_
void TEST_CXX11_shared_spin_lock();
void TEST_TSLQueue();
void TEST_UDPC();
#endif

108
src/test/test_helpers.h Normal file
View file

@ -0,0 +1,108 @@
#ifndef SEODISPARATE_COM_UDPC_TEST_HELPERS_H_
#define SEODISPARATE_COM_UDPC_TEST_HELPERS_H_
#include <cstring>
#include <iostream>
extern int checks_checked;
extern int checks_passed;
// Macros for unit testing.
#define CHECK_TRUE(x) \
do { \
++checks_checked; \
if (!(x)) { \
std::cout << "CHECK_TRUE at line " << __LINE__ << " failed: " << #x \
<< '\n'; \
} else { \
++checks_passed; \
} \
} while (false);
#define ASSERT_TRUE(x) \
do { \
++checks_checked; \
if (!(x)) { \
std::cout << "CHECK_TRUE at line " << __LINE__ << " failed: " << #x \
<< '\n'; \
return; \
} else { \
++checks_passed; \
} \
} while (false);
#define CHECK_FALSE(x) \
do { \
++checks_checked; \
if (x) { \
std::cout << "CHECK_FALSE at line " << __LINE__ << " failed: " << #x \
<< '\n'; \
} else { \
++checks_passed; \
} \
} while (false);
#define ASSERT_FALSE(x) \
do { \
++checks_checked; \
if (x) { \
std::cout << "CHECK_FALSE at line " << __LINE__ << " failed: " << #x \
<< '\n'; \
return; \
} else { \
++checks_passed; \
} \
} while (false);
#define CHECK_FLOAT(var, value) \
do { \
++checks_checked; \
if ((var) > (value) - 0.0001F && (var) < (value) + 0.0001F) { \
++checks_passed; \
} else { \
std::cout << "CHECK_FLOAT at line " << __LINE__ << " failed: " << #var \
<< " != " << #value << '\n'; \
} \
} while (false);
#define CHECK_EQ(var, value) \
do { \
++checks_checked; \
if ((var) == (value)) { \
++checks_passed; \
} else { \
std::cout << "CHECK_EQ at line " << __LINE__ << " failed: " << #var \
<< " != " << #value << '\n'; \
} \
} while (false);
#define CHECK_GE(var, value) \
do { \
++checks_checked; \
if ((var) >= (value)) { \
++checks_passed; \
} else { \
std::cout << "CHECK_GE at line " << __LINE__ << " failed: " << #var \
<< " < " << #value << '\n'; \
} \
} while (false);
#define CHECK_LE(var, value) \
do { \
++checks_checked; \
if ((var) <= (value)) { \
++checks_passed; \
} else { \
std::cout << "CHECK_LE at line " << __LINE__ << " failed: " << #var \
<< " > " << #value << '\n'; \
} \
} while (false);
#define CHECK_STREQ(str_a, str_b) \
do { \
++checks_checked; \
if (std::strcmp((str_a), (str_b)) == 0) { \
++checks_passed; \
} else { \
std::cout << "CHECK_STREQ at line " << __LINE__ << "failed: " << #str_a \
<< " != " << #str_b << '\n'; \
} \
} while (false);
#endif