jumpartifact.com_demo_0/src/screen_trunner.cc

341 lines
10 KiB
C++
Raw Normal View History

#include "screen_trunner.h"
// standard library includes
#include <cassert>
#include <cmath>
2023-08-08 02:33:07 +00:00
#include <queue>
#ifndef NDEBUG
#include <iostream>
#endif
// third party includes
#include <raymath.h>
// local includes
#include "3d_helpers.h"
2023-08-07 03:54:23 +00:00
#include "ems.h"
TRunnerScreen::TRunnerScreen(std::weak_ptr<ScreenStack> stack)
: Screen(stack),
2023-08-08 02:33:07 +00:00
surface(),
2023-08-07 03:54:23 +00:00
camera{Vector3{0.0F, 1.0F, 0.5F}, Vector3{0.0F, 0.0F, 0.0F},
Vector3{0.0F, 1.0F, 0.0F}, 80.0F, CAMERA_PERSPECTIVE},
flags(),
2023-08-04 05:32:05 +00:00
TEMP_cube_model(LoadModel("res/test_cube.obj")),
TEMP_cube_texture(LoadTexture("res/test_cube_texture.png")),
TEMP_matrix(get_identity_matrix()),
2023-08-07 03:54:23 +00:00
camera_pos{0.0F, 4.0F, 4.0F},
camera_target{0.0F, 0.0F, 0.0F},
mouse_hit{0.0F, 0.0F, 0.0F},
pos_value(0.0F),
idx_hit(SURFACE_UNIT_WIDTH / 2 +
(SURFACE_UNIT_HEIGHT / 2) * SURFACE_UNIT_WIDTH) {
#ifndef NDEBUG
std::cout << "idx_hit initialized to " << idx_hit << std::endl;
#endif
2023-08-04 05:32:05 +00:00
TEMP_cube_model.materials[0].maps[MATERIAL_MAP_DIFFUSE].texture =
TEMP_cube_texture;
2023-08-07 03:54:23 +00:00
TEMP_cube_model.transform = TEMP_cube_model.transform *
scale_matrix_xyz(0.5F, 0.5F, 0.5F) *
translate_matrix_y(0.5F);
2023-08-08 02:33:07 +00:00
// Initialize surface.
#ifndef NDEBUG
std::cout << "Initializing surface...\n";
#endif
std::queue<unsigned int> to_update;
to_update.push(SURFACE_UNIT_WIDTH / 2 +
(SURFACE_UNIT_HEIGHT / 2) * SURFACE_UNIT_WIDTH);
while (!to_update.empty()) {
unsigned int idx = to_update.front();
to_update.pop();
if (surface.at(idx).has_value()) {
continue;
}
SurfaceUnit current{0.0F, 0.0F, 0.0F, 0.0F};
// 0000 0001 - nw set
// 0000 0010 - ne set
// 0000 0100 - sw set
// 0000 1000 - se set
unsigned char flags = 0;
// Check adjacent.
if (idx % SURFACE_UNIT_WIDTH > 0) {
if (surface.at(idx - 1).has_value()) {
if ((flags & 1) == 0) {
current.nw = surface.at(idx - 1).value().ne;
flags |= 1;
}
if ((flags & 4) == 0) {
current.sw = surface.at(idx - 1).value().se;
flags |= 4;
}
} else {
to_update.push(idx - 1);
}
}
if (idx % SURFACE_UNIT_WIDTH < SURFACE_UNIT_WIDTH - 1) {
if (surface.at(idx + 1).has_value()) {
if ((flags & 2) == 0) {
current.ne = surface.at(idx + 1).value().nw;
flags |= 2;
}
if ((flags & 8) == 0) {
current.se = surface.at(idx + 1).value().sw;
flags |= 8;
}
} else {
to_update.push(idx + 1);
}
}
if (idx / SURFACE_UNIT_WIDTH > 0) {
if (surface.at(idx - SURFACE_UNIT_WIDTH).has_value()) {
if ((flags & 1) == 0) {
current.nw = surface.at(idx - SURFACE_UNIT_WIDTH).value().sw;
flags |= 1;
}
if ((flags & 2) == 0) {
current.ne = surface.at(idx - SURFACE_UNIT_WIDTH).value().se;
flags |= 2;
}
} else {
to_update.push(idx - SURFACE_UNIT_WIDTH);
}
}
if (idx / SURFACE_UNIT_WIDTH < SURFACE_UNIT_HEIGHT - 1) {
if (surface.at(idx + SURFACE_UNIT_WIDTH).has_value()) {
if ((flags & 4) == 0) {
current.sw = surface.at(idx + SURFACE_UNIT_WIDTH).value().nw;
flags |= 4;
}
if ((flags & 8) == 0) {
current.se = surface.at(idx + SURFACE_UNIT_WIDTH).value().ne;
flags |= 8;
}
} else {
to_update.push(idx + SURFACE_UNIT_WIDTH);
}
}
// Calculate remaining values.
float avg = 0.0F;
unsigned int count = 0;
if ((flags & 1) != 0) {
avg += current.nw;
++count;
}
if ((flags & 2) != 0) {
avg += current.ne;
++count;
}
if ((flags & 4) != 0) {
avg += current.sw;
++count;
}
if ((flags & 8) != 0) {
avg += current.se;
++count;
}
if (count != 0) {
avg = avg / (float)count;
}
if ((flags & 1) == 0) {
current.nw = avg + call_js_get_random() * SURFACE_HEIGHT_INTERVAL -
SURFACE_HEIGHT_INTERVAL / 2.0F;
}
if ((flags & 2) == 0) {
current.ne = avg + call_js_get_random() * SURFACE_HEIGHT_INTERVAL -
SURFACE_HEIGHT_INTERVAL / 2.0F;
}
if ((flags & 4) == 0) {
current.sw = avg + call_js_get_random() * SURFACE_HEIGHT_INTERVAL -
SURFACE_HEIGHT_INTERVAL / 2.0F;
}
if ((flags & 8) == 0) {
current.se = avg + call_js_get_random() * SURFACE_HEIGHT_INTERVAL -
SURFACE_HEIGHT_INTERVAL / 2.0F;
}
surface.at(idx) = current;
}
#ifndef NDEBUG
std::cout << "Screen finished init.\n";
#endif
2023-08-04 05:32:05 +00:00
}
TRunnerScreen::~TRunnerScreen() {
2023-08-04 05:32:05 +00:00
UnloadTexture(TEMP_cube_texture);
UnloadModel(TEMP_cube_model);
}
bool TRunnerScreen::update(float dt) {
2023-08-07 03:54:23 +00:00
pos_value += dt * POS_VALUE_INC_RATE;
if (pos_value > PI * 2.0F) {
pos_value -= PI * 2.0F;
}
if (IsMouseButtonPressed(0)) {
float press_x = GetTouchX();
float press_y = GetTouchY();
Ray ray = GetMouseRay(Vector2{press_x, press_y}, camera);
#ifndef NDEBUG
std::cout << "X: " << press_x << ", Y: " << press_y << std::endl;
std::cout << "Ray pos: " << ray.position.x << ", " << ray.position.y << ", "
<< ray.position.z << " Ray dir: " << ray.direction.x << ", "
<< ray.direction.y << ", " << ray.direction.z << std::endl;
#endif
for (unsigned int idx = 0; idx < SURFACE_UNIT_WIDTH * SURFACE_UNIT_HEIGHT;
++idx) {
int x = idx % SURFACE_UNIT_WIDTH;
int y = idx / SURFACE_UNIT_WIDTH;
float xf = (float)(x)-SURFACE_X_OFFSET;
float zf = (float)(y)-SURFACE_Y_OFFSET;
const auto &current = surface[idx].value();
Vector3 nw{xf - 0.5F, current.nw, zf - 0.5F};
Vector3 ne{xf + 0.5F, current.ne, zf - 0.5F};
Vector3 sw{xf - 0.5F, current.sw, zf + 0.5F};
Vector3 se{xf + 0.5F, current.se, zf + 0.5F};
2023-08-09 04:26:15 +00:00
const auto on_collide_fn = [this, idx, xf, zf,
&current](const auto &collision) {
this->idx_hit = idx;
#ifndef NDEBUG
2023-08-09 04:26:15 +00:00
std::cout << "idx_hit set to " << idx_hit << std::endl;
#endif
2023-08-09 04:26:15 +00:00
this->mouse_hit = collision.value();
this->camera_target.x = xf;
this->camera_target.y =
(current.nw + current.ne + current.sw + current.se) / 4.0F;
2023-08-09 04:26:15 +00:00
this->camera_target.z = zf;
if (idx != SURFACE_UNIT_WIDTH / 2 +
(SURFACE_UNIT_HEIGHT / 2) * SURFACE_UNIT_WIDTH) {
2023-08-09 04:26:15 +00:00
this->camera_pos = Vector3Add(
Vector3Scale(Vector3Normalize(this->camera_target), 4.0F),
this->camera_target);
this->camera_pos.y += 4.0F;
} else {
2023-08-09 04:26:15 +00:00
this->camera_pos.x = 0.0F;
this->camera_pos.y = this->camera_target.y + 4.0F;
this->camera_pos.z = 0.0F;
}
2023-08-09 04:26:15 +00:00
};
if (auto collision = ray_collision_triangle(ray, nw, sw, ne);
collision.has_value()) {
on_collide_fn(collision);
2023-08-09 03:22:33 +00:00
break;
} else if (auto collision = ray_collision_triangle(ray, ne, sw, se);
collision.has_value()) {
2023-08-09 04:26:15 +00:00
on_collide_fn(collision);
2023-08-09 03:22:33 +00:00
break;
}
}
}
camera_to_targets(dt);
return false;
}
bool TRunnerScreen::draw() {
BeginDrawing();
ClearBackground(PixelToColor(Pixel::PIXEL_SKY));
BeginMode3D(camera);
2023-08-08 02:33:07 +00:00
for (unsigned int idx = 0; idx < SURFACE_UNIT_WIDTH * SURFACE_UNIT_HEIGHT;
++idx) {
int x = idx % SURFACE_UNIT_WIDTH;
int y = idx / SURFACE_UNIT_WIDTH;
int ox = x - SURFACE_UNIT_WIDTH / 2;
int oy = y - SURFACE_UNIT_HEIGHT / 2;
float xf = (float)(x)-SURFACE_X_OFFSET;
float zf = (float)(y)-SURFACE_Y_OFFSET;
Color color = idx == idx_hit
? RAYWHITE
: Color{(unsigned char)(200 + ox * 2),
(unsigned char)(150 + oy * 2), 20, 255};
auto &current = surface[idx].value();
DrawTriangle3D(Vector3{xf - 0.5F, current.nw, zf - 0.5F},
Vector3{xf - 0.5F, current.sw, zf + 0.5F},
Vector3{xf + 0.5F, current.ne, zf - 0.5F}, color);
DrawTriangle3D(Vector3{xf + 0.5F, current.se, zf + 0.5F},
Vector3{xf + 0.5F, current.ne, zf - 0.5F},
Vector3{xf - 0.5F, current.sw, zf + 0.5F}, color);
2023-08-07 03:54:23 +00:00
}
2023-08-08 02:33:07 +00:00
// DrawModel(Model{.transform = TEMP_cube_model.transform * TEMP_matrix,
// .meshCount = TEMP_cube_model.meshCount,
// .materialCount = TEMP_cube_model.materialCount,
// .meshes = TEMP_cube_model.meshes,
// .materials = TEMP_cube_model.materials,
// .meshMaterial = TEMP_cube_model.meshMaterial,
// .boneCount = TEMP_cube_model.boneCount,
// .bones = TEMP_cube_model.bones,
// .bindPose = TEMP_cube_model.bindPose},
// Vector3{0.0F, 0.0F, -4.0F}, 1.0F, WHITE);
// TODO DEBUG
DrawLine3D(Vector3{0.0F, 3.0F, 0.0F}, mouse_hit, BLACK);
EndMode3D();
EndDrawing();
return false;
}
Color TRunnerScreen::PixelToColor(Pixel p) {
switch (p) {
case PIXEL_BLANK:
return Color{0, 0, 0, 0};
case PIXEL_BLACK:
return Color{0, 0, 0, 255};
case PIXEL_RED:
return Color{255, 50, 50, 255};
case PIXEL_GREEN:
return Color{50, 255, 50, 255};
case PIXEL_BLUE:
return Color{50, 50, 255, 255};
case PIXEL_YELLOW:
return Color{255, 255, 0, 255};
case PIXEL_CYAN:
return Color{0, 255, 255, 255};
case PIXEL_MAGENTA:
return Color{255, 0, 255, 255};
case PIXEL_ORANGE:
return Color{255, 200, 0, 255};
case PIXEL_BROWN:
return Color{180, 130, 0, 255};
case PIXEL_TURQUOISE:
return Color{0, 255, 200, 255};
case PIXEL_SKY:
return Color{168, 178, 255, 255};
case PIXEL_WHITE:
return Color{255, 255, 255, 255};
default:
assert(!"unreachable");
return Color{0, 0, 0, 255};
}
}
2023-08-07 03:54:23 +00:00
void TRunnerScreen::camera_to_targets(float dt) {
camera.position.x +=
(camera_pos.x - camera.position.x) * CAMERA_UPDATE_RATE * dt;
camera.position.y +=
(camera_pos.y - camera.position.y) * CAMERA_UPDATE_RATE * dt;
camera.position.z +=
(camera_pos.z - camera.position.z) * CAMERA_UPDATE_RATE * dt;
camera.target.x +=
(camera_target.x - camera.target.x) * CAMERA_UPDATE_RATE * dt;
camera.target.y +=
(camera_target.y - camera.target.y) * CAMERA_UPDATE_RATE * dt;
camera.target.z +=
(camera_target.z - camera.target.z) * CAMERA_UPDATE_RATE * dt;
}